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Abstract

Random wavelet series (RWS) provide a flexible framework for modeling multiscale stochastic

processes, but the classical assumption of full independence between wavelet coefficients is often

unrealistic, especially across scales. We introduce semi-dependent random wavelet series (SDRWS),

which preserve independence within each scale while allowing interscale dependencies at fixed spa-

tial locations. Adopting a sample-path perspective, we investigate how this relaxed dependency

structure affects pointwise and global regularity properties. We analyze the resulting multifractal

behavior and show how it differs from that of fully independent models. Finally, we study the

uniform Hölder regularity exponent Hmin, providing theoretical results and statistical estimation

procedures that are relevant for multifractal analysis and model validation.
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1 Introduction

At the end of the 1980s, when orthonormal wavelet bases were introduced, the question of identifying

pertinent wavelet models for data became a major issue. In signal and image processing, this issue

was rapidly addressed through denoising algorithms that explicitly account for the clustering of large

wavelet coefficients, such as hidden Markov tree models and neighborhood-based shrinkage rules, see

e.g. [21, 68, 70, 66]. A first step was the estimation of the distributions of wavelet coefficients for

a variety of signals and images; these computations led to a first important conclusion: these distri-

butions often match a simple parametric mixture model whose components are a Dirac mass at the

origin mixed with a generalized Gaussian distribution, see [77]. The knowledge of the distributions

of wavelet coefficients at available scales has been used in different contexts; see e.g. [67], where a

denoising method is based on the assumption that wavelet coefficients follow a generalized Gaussian

distribution. A recent application is supplied by wavelet quantile normalization (WQN) in statistics, a

denoising algorithm based on the idea of mapping, at each scale, the distribution of wavelet coefficients

of the corrupted signal onto a theoretical distribution previously computed on data available without

noise, see [24, 25]. Beyond denoising, empirical and theoretical distributions of wavelet coefficients

have also been used for Bayesian estimation and MAP shrinkage rules, texture analysis and synthe-

sis, as well as hypothesis testing and model selection in the presence of scaling laws, see e.g. [73, 33, 4].

However, a major difficulty in the construction of realistic wavelet models lies in the determination

of the dependencies between wavelet coefficients, see [16] for the determination of the dependency

between pairs of nearby wavelet coefficients in images. This issue has become even more relevant with

the recent proliferation of models supplied by IA algorithms, whose mathematical properties are not

well understood; determining whether they display realistic dependency structures has thus become a

major concern, see e.g. [60]. This problem cannot be addressed in full generality; nonetheless, various

models based on wavelet coefficients have been proposed, which make specific assumptions on the

dependencies between coefficients.

Cascade-type models lie at one end of the spectrum. They originate in turbulence, where the cascade

assumption is justified by a heuristic argument proposed by Richardson to explain energy dissipation at

small scales, see [30] and references therein, as well as [56] for the related model of fractional Brownian

motion in multifractal time. These models were subsequently tailored to the wavelet framework, see [8,

79, 26], and they imply strong correlations between the magnitudes of neighbouring wavelet coefficients.

A related model is provided by multifractal random walks (MRW), which are used in mathematical

finance and present the advantage of having Gaussian marginals [10, 11]. At the other end of the

spectrum are random wavelet series (RWS), which provide models where the statistics of wavelet

coefficients can be freely prescribed at each scale, and the coefficients are then all drawn independently

according to these distributions, both across scales and spatial positions. Intermediate models include

Gaussian scale mixture models and compound Poisson or Lévy-based wavelet constructions, which

allow for sparse representations and intermittency effects while retaining partial statistical structure,
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see e.g. [78, 13, 38].

One way to assess the relevance of such models is through the estimation of nonparametric char-

acteristics such as those supplied by multifractal analysis. State-of-the-art techniques in this area

are based on wavelet expansions, and one of their byproducts has been to highlight the crucial role

played by wavelet leaders (defined as local suprema of wavelet coefficients) in the estimation of the

multifractal spectrum of data [40, 3]. A key property of these quantities is that they make it pos-

sible to account for the clustering of large wavelet coefficients without assuming any a priori model.

Indeed, permuting the locations of the wavelet coefficients at a given scale does not modify their dis-

tribution but can completely alter the distribution of wavelet leaders [41]. Therefore, wavelet leaders

encapsulate information on the spatial correlations between large coefficients, and comparing their

distributions with those of the coefficients themselves offers a way to validate models exhibiting vari-

ous types of dependency structures. In particular, a general conclusion drawn from the determination

of the Legendre multifractal spectrum of many mathematical models is the following: models with no

dependency between coefficients yield spectra that increase until they reach their maximum and then

fall abruptly to −∞, whereas the spectra of cascade-type models exhibit a decreasing branch after

the location of their maximum. Related extreme multifractal behaviors are also exhibited by lacunary

series supported on Cantor-type sets, which provide classical benchmark constructions with strong

sparsity and highly erratic pointwise regularity, see e.g. [37]. These observations raise the question:

How is the multifractal analysis of random wavelet series affected when the (very strong) assumption

of full independence of wavelet coefficients is relaxed?

Another motivation for investigating this question is that this independence assumption is unrealistic

in applications, as demonstrated by the aforementioned studies on correlations between pairs of wavelet

coefficients. Nonetheless, this assumption is often found reasonable for wavelet coefficients at a given

scale, since, in contrast with pointwise values, correlations decay rapidly with the distance between

the supports of the corresponding wavelets, see e.g. [29], but it is much less realistic for interscale

correlations. Indeed, signals exhibiting local singularities typically display large wavelet coefficients

at multiple scales and at the same spatial location. This motivates the study of models in which the

independence assumption across scales is dropped, while independence at a given scale is preserved.

Beyond these modeling issues, the present work adopts a sample-path point of view, which is natural

in signal and image processing applications, where observed data are interpreted as realizations of

stochastic processes. From this perspective, one is interested in describing both the global and point-

wise Hölder regularity properties of typical sample paths, as is customary in the multifractal analysis

of stochastic processes [40, 3]. The pointwise regularity of a generic realization may exhibit strong

spatial fluctuations, a phenomenon that plays a central role in multifractal analysis. In the case of

random wavelet series with sufficiently heterogeneous coefficient magnitudes, this leads to a highly

erratic behavior: although the Hölder exponent at any fixed point almost surely takes a constant

value, the collection of pointwise exponents attained along a single sample path typically fills a whole

interval, see [9]. Such erratic behaviors are not specific to wavelet-based models and also arise, for

instance, in Lévy processes [38].
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In this article, we extend the classical random wavelet series framework introduced in [9] by allowing

dependencies between wavelet coefficients across scales, while preserving independence at each fixed

scale. This more general model, referred to as semi-dependent random wavelet series (SDRWS), is

motivated by applications involving stochastic processes with isolated singularities, which naturally

exhibit strong correlations between wavelet coefficients at different scales but at the same spatial

location. We investigate how this relaxed dependency structure impacts both pointwise and global

regularity properties.

A second main objective of this work is the estimation of the parameter Hmin
X , which characterizes

the uniform Hölder regularity of the process X and provides a global bound on the smoothness of

its sample paths. Although often overlooked, this parameter plays a fundamental role in multifractal

analysis. Its wavelet characterization, rooted in the classical theory of function spaces [57], underlies

several estimation procedures based on the decay of wavelet coefficients [74, 76, 29, 2], and explains its

importance in applications requiring global regularity control. In particular, Hmin
X has been used for

model selection in stochastic modeling and texture analysis [80], as well as for hypothesis testing in the

presence of scaling laws or long-range dependence [4]. The present contribution complements recent

developments on the estimation of multifractal parameters, such as log-cumulants [62], by providing a

detailed analysis of the uniform regularity exponent in both independent and semi-dependent random

wavelet series models, relying in particular on wavelet leaders [51, 81].

In line with these objectives, our main contributions are as follows:

• We refine the uniform modulus of continuity result established by [42] in the RWS framework

(Proposition 2.3), and extend it to settings with dependent coefficients, both in the general

SDRWS model (Proposition 2.4) and in the specific case of generalized Gaussian mixture laws

(Corollary 2.5). We further investigate the pointwise modulus of continuity in both RWS and

SDRWS settings (Proposition 2.8).

• We determine the multifractal spectrum of SDRWS (Corollary ??) as a consequence of a block

ubiquity theorem (Theorem 3.2). This general result is then specified for generalized Gaussian

mixture models (Proposition 3.4), for which we also compute the almost-everywhere modulus of

continuity (Proposition 3.5).

• We propose a statistical procedure for estimating the uniform regularity exponentHmin, together

with an explicit confidence interval (Theorem 4.3), and validate its performance empirically.

The paper is organized as follows. Section 2.1 recalls the construction of RWS, specifies the model un-

der study, and introduces the SDRWS framework. Section 2.2 establishes the sharp uniform modulus

of continuity, and Section 2.3 links it to the maximal pointwise irregularity. The multifractal analysis

is revisited in Section 3.1 and extended to the SDRWS setting in Section 3.2, yielding a simple multi-

fractality criterion. Section 3.3 and Section 3.4 address the case of generalized Gaussian mixtures and

their almost-everywhere modulus of continuity. Finally, Section 4 presents the estimation procedure

for Hmin and its confidence interval.
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2 Random wavelet series and semi-dependent random wavelet series

2.1 The model

Random wavelet series (RWS) were introduced in [9] in the one-variable periodic setting, where their

pointwise regularity properties were studied and their multifractal spectrum was determined. Its

relevance in statistical modelling has been investigated, see [31, 32, 53, 69], and it has been used in

various settings, incuding turbulence [49]. Recently, the multifractal analysis based on the Hölder

exponent performed in [9] has been extended to the p-exponent in [27], and sharp results concerning

the global Besov regularity of RWS were recently established in [34]. In this work, we consider the

more general case of random fields, that is, non-periodic processes defined on Rd; this setting is more

relevant for applications in image modeling and processing [6, 55]. The reader can easily check that

these modifications have no consequence for the results from [9] that we will use. Conversely, in some

papers (see [7, 45, 50]) dealing with nonparametric estimation in a regression setting via a discrete

wavelet transform, periodized wavelet bases are considered; one can easily check that the results we

obtain can be readily adapted to that setting.

2.1.1 RWS and SDRWS

Random wavelet series are formally defined as follows: A smooth orthonormal wavelet basis of L2(Rd)

is of the form

φ(x− k) and 2dj/2ψ(i)(2jx− k), x ∈ Rd, j ≥ 0, k ∈ Zd, i ∈ [2d − 1],

where [n] := {1, . . . , n}, φ and the ψ(i) are smooth functions with fast decay (the required smoothness

for a given result can easily be tracked if needed). We will use the notations

φk(x) = φ(x− k) and ψ
(i)
j,k(x) = ψ(i)(2jx− k).

Definition 2.1. A semi-dependent random wavelet series (SDRWS) X = (Xx)x∈Rd associated with a

given orthonormal wavelet basis is a stochastic process such that, for each j, the wavelet coefficients

C
(i)
j,k of the random variable

Xx =
∑
k∈Zd

Ck φk(x) +
∑

i∈[2d−1], j≥0, k∈Zd

C
(i)
j,k ψ

(i)
j,k(x) (1)

are independent and share a common law µj.

The stochastic process X is a random wavelet series (RWS) if, additionally, the C
(i)
j,k are all independent

random variables.

Remark 1. Since we are interested in regularity properties of sample paths, we make no assumption

on the Ck which yield a smooth contribution to (1), and we do not mention this component in the

following.

As regards the assumptions on the C
(i)
j,k, the RWS model is completely specified whereas the SDRWS

model is not: A key advantage of this model is that no assumptions are made on the dependencies

between wavelet coefficients located at different scales.
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2.1.2 A key example: random wavelet mixtures (RWM) and their generalization

In both independent and semi-dependent settings, we will focus on the particular case where, for each

j ≥ 0 and i ∈ [2d − 1], the law of C
(i)
j,k is a mixture process defined as follows. Let Y be a real random

variable whose law µ has a density G with respect to the Lebesgue measure on R. We make the

following wavelet density assumptions on a triple (G, (pj)j≥0, (Cj)j≥0), which involve the density G as

well as the non-negative sequences (pj)j≥0 and (Cj)j≥0 characterizing the sparsity and regularity of

the model:

Assumption 1. 1. G is continuous in a neighbourhood of 0.

2. G(0) > 0.

3. The mapping A 7→ P(|Y | ≥ A) has fast decay.

4. (pj)j≥0 is a nonnegative sequence such that

lim
j→+∞

pj = 0 and lim sup
j→+∞

2jpj = +∞. (2)

5. (Cj)j≥0 is a nonnegative sequence such that

∃C, ε > 0, ∀j ≥ 0, Cj ≤ C2−εj . (3)

Definition 2.2. Let (G, (pj)j≥0, (Cj)j≥0) be a triple satisfying Assumption 1. A semi-dependent

random wavelet mixture (SDRWM) of parameters (G, (pj)j≥0, (C
(i)
j,k)j≥0,k∈Zd,i∈[d]) is a SDRWS such

that the law of its wavelet coefficients C
(i)
j,k satisfy

(i) Sparsity: ∀j ≥ 0, ∀i ∈ [d], ∀k ∈ Zd, P(C(i)
j,k = 0) = 1− pj;

(ii) Amplitude distribution (conditional): Conditionally on C
(i)
j,k ̸= 0, C

(i)
j,k
L
= CjY where the law

of Y has density G.

A random wavelet mixture (RWM) corresponds to the particular case where the SDRWM actually is

a RWS (i.e. all wavelet coefficients of the process are independent). The law of C
(i)
j,k and the law of

CjY will be denoted by νj and µj, respectively.

Remark 2. In practice, the constant Cj may depend on the wavelet index (i). Indeed, in the two-

dimensional case, the three wavelets used are tensor products of the univariate functions φ and ψ:

ψ(1)(x, y) = ψ(x)φ(y), ψ(2)(x, y) = φ(x)ψ(y), and ψ(3)(x, y) = ψ(x)ψ(y).

Therefore the two first ones display cancellation in one direction only (respectively the first and the

second variable) whereas the third one displays cancellation in both variables. It follows that, in the

case of anisotropic textures, the statistics of the coefficients on the first and second wavelets may

differ; and, in all cases, statistics that are more peaked at the origin are observed for the third wavelet

because of the extra cancellation; see [55]. For notational simplicity, we do not make this possible

dependence explicit; adapting our results to account for it is straightforward.
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Although these processes are defined on Rd, we restrict our analysis to the cube K = [0, 1]d, which

entails no loss of generality with respect to local regularity properties. We work with a compactly

supported wavelet basis, which ensures that for sufficiently large j, the wavelets affecting the process

on K have indices satisfying k · 2−j ∈ [0, 1)d. Accordingly, we will focus on the corresponding

Nj = (2d − 1) 2dj (4)

wavelet coefficients in what follows.

2.1.3 Discussion on the model and related works

Connection with lacunary wavelet series The parameters pj quantify the sparsity of the series

since

pj = E[{k : C
(i)
j,k ̸= 0}♯].

The first condition in (2) means that most wavelet coefficients of Xt vanish, and the second one

implies that the series is not too sparse, i.e. that the number of nonvanishing wavelet coefficients

tends to +∞ as j tends to +∞. This model is consistent with certain Bayesian wavelet techniques for

nonparametric regression (see for instance [77] and the references therein) where the prior on the law

νj takes the form

pjµj + (1− pj)δ0,

where δ0 is a Dirac mass at 0. The hyperparameters pj and the ones involved in the definition of µj ,

need to be appropriately specified. A choice which leads to multifractal sample paths is

pj = 2(η−d)j for η ∈ (0, d). (5)

A model where this assumption was made is supplied by lacunary wavelet series, see [39]; the par-

ticular case investigated corresponded to the following choice: there are ∼ 2ηj non-vanishing wavelet

coefficients drawn at random in [0, 1]d of size 2−αj (where α > 0).

Link with uniform regularity We will see that the sequence (Cj)j≥0 (essentially) quantifies the

uniform regularity of the sample paths of the process X. A typical choice is Cj = 2−γj for a γ > 0.

Assumption (3), together with the fast decay assumption on P(|Y | ≥ A), imply that the process X

is well defined and has some uniform regularity: for any ε′ < ε, a.s. the sample paths of X locally

belong to the Hölder space Cε′
loc see [9]; this result will be sharpened in Proposition 2.3 below.

Density function Considerable attention has been devoted to analyzing the marginals of wavelet

coefficients of images. They typically exhibit heavy-tailed distributions: most are small, while a few

take large values, especially when α < 2, resulting in marginal distributions with heavier tails than the

Gaussian [28, 54, 73]. Therefore, we focus on the case where the probability density G is a generalized

Gaussian distribution, denoted by GG(0, 1, α), such that

Gα(x) =
α

2Γ( 1α)
e−|x|

α
, (6)
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where Γ denotes the gamma function, the normalizing constant being such that
∫
G(x)dx = 1; indeed,

the corresponding statistics of wavelet coefficients are commonly met in signal and image processing.

This non-Gaussianity has motivated various Bayesian models, including mixtures of Gaussians [1, 19]

and broader classes of Gaussian scale mixtures for image denoising [65, 71, 72, 75].

Wavelet decompositions are especially suited for natural images, which often consist of smooth regions

interrupted by edges, so-called “cartoon-type” structures [23, 55]. Smooth areas yield near-zero coef-

ficients, while edges generate sparse, high-amplitude ones. This structure explains the sharp central

peaks, heavy tails, and inter-scale correlations observed in wavelet coefficient histograms [73, 65].

Although non-Gaussian image statistics have long been observed, more recent models capture these

effects via linear predictors with structured uncertainty [16], sparse coding [63], or hidden Markov

models [21]. Deep learning approaches have further improved modeling of inter-scale dependencies, as

in [46], where a CNN-based method leverages a stationary local Markov model across scales.

These developments motivate going beyond the RWS model by relaxing the assumption of inter-scale

independence, which is often unrealistic. In this work, however, we focus on analyzing the simplest

consistent models - those with independence at fixed scale (RWS) or across scales (SDWS) - as a

baseline for further investigation.

2.2 Uniform regularity of RWS and SDRWS

A first basic information concerning the uniform regularity of a function defined on Rd or of the sample

paths of a stochastic process is supplied by its uniform Hölder exponent:

Hmin
f = sup{α : f ∈ Cα

loc(Rd)}. (7)

For instance, in the case of fractional Brownian motion, the uniform Hölder exponent coincides with

the Hurst exponent. However, this notion does not yield sharp estimates for the modulus of continuity.

In particular, for Brownian motion, knowing that Hmin
B = 1/2 does not provide any information on

the logarithmic corrections appearing in its uniform modulus of continuity. As mentioned in the

introduction, the latter is given by h 7→
√

2|h| log(log(1/h)) (see [52]).

The uniform Hölder exponent of RWS has been determined in [9]; see also (27) below. One of our

aims here is to refine this result and obtain sharp estimates for the uniform regularity of RWS and

SDRWS. To this end, we will rely on the following general framework (see Sec. 1.1 of [42]).

Definition 2.3. A modulus of continuity is a positive non-decreasing function θ : R+ → R+ satisfying

∃C > 0 :

{
θ(0) = 0

∀h > 0, θ(2h) ≤ Cθ(h).

Additionally, θ is an admissible modulus of continuity if it satisfies

∃N ∈ N, ∃C > 0, ∀J ≥ 0,



∑
j≥J

2Njθ(2−j) ≤ C2NJθ(2−J)

∑
j≤J

2(N+1)jθ(2−j) ≤ C2(N+1)Jθ(2−J).
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the corresponding N is referred to as the order of the modulus.

The relevance of admissible moduli of continuity lies in the fact that they can be characterized exactly

through conditions on the absolute values of wavelet coefficients. The most commonly encountered

moduli are of the form, for h small enough,

θ(h) = hα| log(h)|β(log(| log(h)|))γ for α > 0, β, γ ∈ R,

which are admissible if and only if α /∈ N (in which case [α] denotes the order of the modulus).

We recall below the definition of the uniform modulus of continuity of a function, which serves to

characterize its uniform regularity; see [42].

Definition 2.4. Let f : Rd → R be a locally bounded function, and let θ be an admissible modulus of

continuity of order N ∈ N; θ is a uniform modulus of continuity for f if:

1. f ∈ CN (Rd),

2. For every multi-index i = (i1, . . . , id) with |i| = N , the partial derivatives f (i) satisfy

∃C > 0, ∀i ∈ [d], ∀x, y ∈ Rd such that x ̸= y, |f (i)(x)− f (i)(y)| ≤ C
θ(∥x− y∥)
∥x− y∥N

. (8)

The function θ is a sharp mudulus of continuity if, in addition, no function ω which is a o(θ) is a

modulus of continuity.

Remark 3. If Hmin
f > 0, then it can be rewritten

Hmin
f = sup{α : h 7→ hα locally is a uniform modulus of continuity of f}.

In the present study, moduli of continuity are defined up to a multiplicative constant that we will not

track.

The following characterization is proved in [42].

Proposition 2.1. (Prop. 1.2 of [42]) Let f : Rd → R be a locally bounded function, and let

(Ck, C
(i)
j,k)j,k,i be its coefficients in a smooth wavelet basis (φk, ψ

(i)
j,k)j,k,i. If θ is a uniform modulus

of continuity for f , then the wavelet coefficients of f satisfy

∃C > 0, ∀k ∈ Zd, |Ck| ≤ C. (9)

and

∃C > 0, ∀(j, k, i) ∈ N× Zd × [d], |C(i)
j,k| ≤ Cθ(2−j). (10)

Conversely, assume that the wavelet coefficients of f satisfy (9) and (10); then:

1. If θ is a admissible modulus, then (8) holds and θ is a uniform modulus of continuity for f ;
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2. Otherwise, (8) is replaced by

∃C > 0, ∀(x, y) ∈ Rd, |f (i)(x)− f (i)(y)| ≤ C
θ(∥x− y∥)
∥x− y∥N

(1 + | log(∥x− y∥)|), (11)

and these results are optimal.

It follows that the uniform modulus of continuity of a function f is determined by the size of its

largest wavelet coefficient at each scale. In the general framework of RWS, and without additional

assumptions on the distribution of the wavelet coefficients, the uniform Hölder exponent Hmin
f was

established in [9]. We now refine this result by deriving a sharp uniform modulus of continuity.

To state the result, we introduce the functions fj defined for j ≥ 0 and a ≥ 0 by

∀j ≥ 0, ∀a ≥ 0, fj(a) = P(|C(i)
j,k| > a), (12)

that is, 1− fj is the cumulative distribution function of the random variable |C(i)
j,k|.

Lemma 2.2. Let X be a RWS defined on Rd. Let (fj)j≥0 be a sequence of functions satisfying (12)

and assume that (aj)j≥0 is a positive decreasing sequence such that

fj(aj) = o(2−dj). (13)

• If
∑

j 2
djfj(aj) <∞, then a.s., for j large enough, sup

k
|C(i)

j,k| ≤ aj;

• If
∑

j 2
djfj(aj) = +∞, then a.s., for j large enough, there exists an infinite number of values of

j such that sup
k

|C(i)
j,k| ≥ aj.

Proof. Since the C ·2dj coefficients C
(i)
j,k for k ·2−j ∈ [0, 1) are independent random variables, it follows

that the probability that one of them is larger than aj is

Pj = 1− (1− fj(aj))
C·2dj = C · 2djfj(aj) +O

(
(2djfj(aj))

2
)
.

Thus,
∑

j Pj is finite if and only if
∑

j 2
djfj(aj) < ∞. Using the independence of the wavelet coeffi-

cients, one can apply the Borel-Cantelli lemma, and Lemma 2.2 follows.

The following result is a consequence of Proposition 2.1 and Lemma 2.2.

Proposition 2.3. Let X be a RWS on Rd. Let (fj)j≥0 and (aj)j≥0 be sequences satisfying (12) and

(13). Define the function g : R+ → R+ by{
g(2−j) = aj

g is constant on [2−j , 2 · 2−j)
. (14)

• If
∑

j 2
djfj(aj) < ∞ and g is an admissible modulus of continuity, then a.s. the function

h 7→ g(h) is a uniform modulus of continuity for X.

• If
∑

j 2
djfj(aj) < ∞ and g is not an admissible modulus of continuity, then a.s. the function

h 7→ g(h)(1 + | log h|) is a uniform modulus of continuity for X.
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• If
∑

j 2
djfj(aj) = +∞, then any function g̃ such that g̃(h) = o(g(h)) as h → 0 is almost surely

not a uniform modulus of continuity for X.

Proof. In the first case, Lemma 2.2 shows that the condition
∑

j 2
djfj(aj) < ∞ implies that, almost

surely, for all sufficiently large j, supk |C
(i)
j,k| ≤ aj . Using the definition (14), this can be rewritten as

sup
k

|C(i)
j,k| ≤ g(2−j).

This allows us to apply the second part of Proposition 2.1. If the modulus g is admissible, then Point

1) of Proposition 2.1 gives the first statement of Proposition 2.3. Otherwise, Point 2) yields the second

statement. As for the third statement of Proposition 2.3, it follows by a similar argument, this time

relying on the first part of Proposition 2.1 together with the second statement of Lemma 2.2.

We now consider the setting of SDRWS, i.e. we drop the assumption that wavelet coeffi-

cients located at different scales are independent. Consider a sequence (fj)j≥0 satisfying (12).

Fix a constant C > 0, and define the sequence (bj)j≥0 by

fj(bj) = Cj2
−dj , (15)

as well as the function ḡ : R+ → R+ by

ḡ(2−j) = bj , and extend it as a constant on [2−j , 2 · 2−j). (16)

The following result follows from Proposition 2.1 and Lemma 2.2.

Proposition 2.4. Let X be a SDRWS defined on Rd. Let (fj)j≥0 and (aj)j≥0 be sequences satisfying

(12) and (13) and let g and ḡ be defined respectively by (14) and (16).

• If
∑

j 2
djfj(aj) < ∞ and g is an admissible modulus of continuity, then a.s. the function

h 7→ g(h) is a uniform modulus of continuity for X.

• If
∑

j 2
djfj(aj) < ∞ and g is not an admissible modulus of continuity, then a.s. the function

h 7→ g(h)(1 + | log(h)|) is a uniform modulus of continuity for X.

• If
∑

j 2
djfj(aj) = +∞, then any function g̃ : R+ → R+ such that g̃(h) = o(ḡ(h)) as h → 0 is

almost surely not a uniform modulus of continuity for X.

Proof. We first observe that the first two statements of Proposition 2.3 remain valid, as they rely only

on the direct part of the Borel-Cantelli lemma and therefore do not require independence.

We now turn to establishing irregularity results in this more general setting. As before, the key point

is to identify, as j → ∞, a sequence of “large” wavelet coefficients. For each fixed scale j, let Qj denote

the probability that all C · 2dj wavelet coefficients at scale j are bounded by bj . By independence, we

have

log(Qj) = C ′ · 2dj log(1− fj(bj)) = −C ′′j(1 + o(1)),

12



for some constant C ′′ > 0. Hence, Qj = e−C
′′j(1+o(1)). Applying the direct part of the Borel-Cantelli

lemma, we conclude that almost surely, for all sufficiently large j, at least one coefficient cj,k,i exceeds

bj . Since ḡ is defined by ḡ(2−j) = bj and extended as a constant on the interval [2−j , 2 · 2−j), with
(bj)j≥0 given by (15), the claim follows from the same argument as before.

Remark 4. The slight loss between the converse parts of Propositions 2.3 and 2.4 stems from the fact

that we cannot apply the Borel-Cantelli lemma simultaneously to all wavelet coefficients; instead, a

scale-by-scale argument is required. Corollary 2.5 below illustrates this phenomenon by comparing

the corresponding moduli of continuity in the case where the distributions of the wavelet coefficients

are generalized Gaussian mixtures.

Let us now examine how these conditions specialize in the case of the mixture models introduced in

Definition 2.2.

Corollary 2.5. Let X be a RWM with parameters Cj = 2−γj and pj ≥ 2(ε−1)j for some ε > 0. If

γ /∈ N, then a sharp uniform modulus of continuity of X almost surely is

h 7→ g(h) = hγ | log h|1/α. (17)

If γ ∈ N, then
h 7→ g(h) = hγ | log h|1+1/α (18)

is a uniform modulus of continuity for X, and any function that is o(hγ | log h|1/α) is not a uniform

modulus of continuity for X.

Now let X be a SDRWM with the same assumptions on Cj and pj. Then the function in (18) is a

uniform modulus of continuity for X, and the function h 7→ hγ | log h|(1/α)−1 is not a uniform modulus

of continuity for X.

Proof. Since, for a large,

Fα(a) :=

∫ ∞
a

e−x
α
dx =

e−a
α

αaα−1
(1 + o(1)), (19)

it follows that

P(|C(i)
j,k| ≥ aj) := fj(aj) = Cpj

e−(aj/Cj)
α

(aj/Cj)α−1
(1 + o(1)),

and the uniform regularity of X will be given according to the convergence or divergence of the series

∑
j

2dj pj
e−(aj/Cj)

α

(aj/Cj)α−1
. (20)

Since Cj = 2−γj with γ > 0, Theorem 1 of [9] yields that the uniform Hölder exponent Hmin
X of

the corresponding RWS is γ so that we expect a slight correction of a uniform modulus of the form

h 7→ θ(h) = hγ . For this reason, we take aj under the form aj = a2−γjjb. The general term of the

series (20) boils down to

2dj pj
e−a

αjbα

aα−1jb(α−1)
.

13



We assume that pj ≥ 2(ε−1)j for an ε > 0 (which covers the specific case we considered in (5)). Then

we pick b = 1/α: For a large enough, the series is convergent, whereas for a small it is divergent.

These choices yield moduli of continuity of the form h 7→ g(h) = Chγ | log h|1/α. Hence Corollary 2.5

follows from Corollaries 2.3 and 2.4 applied to these specific settings.

We can contrast these results with those obtained in the case of Gaussian processes that can be

expanded into wavelet series with pure (in contrast to mixtures) Gaussian statistics such as fractional

Brownian motion (fBm).

Indeed, the fBm with Hurst index H ∈ (0, 1) can be expanded (see [58]) as

BH
t =

∑
j∈N

∑
k∈Z

2−Hjξj,kψH+1/2(2
jt− k) +Rt =: ZH

t +Rt,

where R is a smooth process and (ξj,k, j ∈ N, k ∈ Z) is a sequence of i.i.d. standard normal variables,

and the ψH+1/2 is a biorthogonal wavelet basis. The uniform modulus of continuity of the RWS Zt

is h 7→ |h|H | log h|1/2. We retrieve the uniform modulus of continuity of the fBm as the specific case

pj = 1 (no mixture), with Cj,k = ξj,k, Cj = 2−γj = 2−Hj and α = 2.

2.3 Most irregular points of RWS and SDRWS

The technique which led to the determination of the uniform regularity of RWS and SDRWS also

yields their pointwise irregularity in a sharp way at the most irregular points. In order to state such

results, we first recall the notion of pointwise modulus of continuity.

Definition 2.5. Let f : Rd → R be a locally bounded function, and let θ be a modulus of continuity

of order N . We say that θ is a modulus of continuity of f at x0 if there exists a polynomial Px0 of

degree at most N and constants C > 0 and δ > 0 such that, for all x with |x− x0| < δ,

|f(x)− P (x− x0)| ≤ Cθ(|x− x0|). (21)

The function θ is a sharp mudulus of continuity at x0 if, in addition, no function ω which is a o(θ) is

a modulus of continuity at x0.

We will use the following notation. To index wavelets and their coefficients, we will interchangeably

use dyadic cubes

λj,k =

[
k1
2j
,
k1 + 1

2j

]
× · · · ×

[
kd
2j
,
kd + 1

2j

]
where k = k1, · · · , kd (22)

and we will write C
(i)
λ or C

(i)
j,k without distinction. For a dyadic cube λ, let 3λ denote the cube with

the same center and three times the side length.

If f : Rd → R is locally bounded, the wavelet leaders of f are defined by

ℓλ = sup
λ′⊂3λ

|C(i)
λ′ |.

14



For x ∈ Rd, denote by λj(x) the unique dyadic cube of side length 2−j containing x. A key fact is

that the pointwise modulus of continuity can be recovered from the wavelet leaders, as stated in the

following result; see [40, 42].

Theorem 2.6. Let f ∈ Cε
loc(Rd) for an ε > 0 and let ψ

(i)
j,k be a smooth wavelet basis. If θ is a modulus

of continuity of f at x0, then the wavelet leaders of f satisfy

∃C > 0, ∀j, k, ℓλj(x0) ≤ Cθ(2−j). (23)

Conversely, assume that the wavelet coefficients of f satisfy (23); then

h 7→ θ(h)(1 + | log(h)|)

is a modulus of continuity of f at x0.

As a consequence of Lemma 2.2, let us prove the following result.

Proposition 2.7. Let X be a RWS. If its uniform modulus of continuity is admissible, then there

exists a dense set of points where the pointwise modulus of continuity of X is equal to its uniform

modulus of continuity.

Remark 5. Before proving this result, let us motivate its statement; indeed, a common belief is that

the uniform modulus of continuity coincides with the largest pointwise modulus of continuity met in

the data, in which case this result would not be relevant. However, it is not the case, as shown by

chirps of the form x 7→ |x|α sin(1/|x|β) for α, β > 0, see [42] for a detailed analysis this question.

Proof of Proposition 2.7. Let λ be an arbitrary dyadic cube contained in [0, 1)d. The proof of the

second statement of Lemma 2.2 can be carried out inside λ instead of [0, 1)d. In particular, it yields

a sub-cube λ′ ⊂ λ such that |Cλ′ | ≥ aj . Iterating this argument within λ′, we construct a sequence

(λn)n≥0 of dyadic cubes with generations (jn)n≥0 such that

λn+1 ⊂ λn and |Cλn | ≥ ajn .

This nested sequence of cubes converges to a point x0, at which Theorem 2.6 implies that the modulus

of continuity of f cannot be o(θ(h)). Since the pointwise modulus of continuity is always bounded

above by the uniform modulus of continuity, it follows that θ is a sharp modulus of continuity at

x0 ∈ λ. As λ was arbitrary, the set of such points is dense in [0, 1)d.

We now consider the case of SDRWS. The argument for the determination of the most irregular points

is the same as for RWS, except that the sequence (aj)j≥0 is replaced by the sequence (bj)j≥0 defined

by (15). The following result follows.

Proposition 2.8. Let X be a SDRWS. If its uniform modulus of continuity is admissible, then there

exists a dense set of points where the function g̃ defined in Corollary 2.4 is not a pointwise modulus

of continuity of X.
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3 Multifractal analysis

In this section we first recall the results of [9] concerning the multifractal analysis of RWS and then

we show how they extend to the more general setting of SDRWS.

We begin by recalling several notions from multifractal analysis. Let γ ≥ 0 and let f : Rd → R be

a locally bounded function. The function f belongs to Cγ(x0) if h 7→ hγ is a pointwise modulus of

continuity for f at x0.

The Hölder exponent of f at x0 is

hf (x0) = sup {γ : f is Cγ(x0)} . (24)

Themultifractal spectrum of f describes the size of the sets of points sharing the same Hölder exponent,

the so-called isohölder sets

If (H) = {x : hf (x) = H}, (25)

see [64]. It is defined by

Df (H) = dim(If (H)),

where dim denotes the Hausdorff dimension (with the convention dim(∅) = −∞).

The multifractal support of f is the set

MSf = {H : Df (H) ≥ 0} = {H : If (H) ̸= ∅}.

3.1 Multifractal analysis of RWS

The a.s. multifractal spectrum of the sample paths of RWS has been determined in [9], and we now

recall these results; we keep the same notations as in this article, making the necessary adjustments

required by the d-variable setting; denote by ρj the common probability measure of the 2dj random

variables Xj,k := − log2(|C
(i)
j,k|)/j. Thus ρj satisfies

P
(
|C(i)

j,k| ≥ 2−αj
)
= ρj((−∞, α]).

Note that it follows from (12) that ρj((−∞, α]) = fj(2
−αj).

We note for α ≥ 0

ρ(α, ε) := lim sup
j→+∞

log2
(
2djρj([α− ε, α+ ε])

)
j

and the wavelet large deviation spectrum of the corresponding RWS is

ρ(α) := inf
ε>0

ρ(α, ε). (26)

As in [9], we suppose that ρ(α) takes a positive value for at least one value of α. Let

W =
{
α : ∀ε > 0,

∑
j∈N

2jρj([α− ε, α+ ε]) = +∞
}
.
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Let

Hmax
X :=

(
sup
α>0

ρ(α)

α

)−1
.

The assumptions made on RWS imply that Hmin
X > 0, and the uniform Hölder exponent of a RWS is

positive and given by

Hmin
X := inf

α≥0
W. (27)

The following result yields the multifractal spectrum of almost every sample paths of a RWS.

Theorem 3.1. (Theorem 2 of [9]). Let X be a random wavelet series. With probability one, the

sample paths of X satisfy the following properties:

1. Their multifractal support is SX = [Hmin
X , Hmax

X ];

2. Their multifractal spectrum is given by

∀H ∈ SX , DX(H) = H sup
α∈(0,H]

ρ(α)

α
; (28)

3. For almost every x,

hX(x) = Hmax
X . (29)

Remark 6. • The first statement implies that the Hölder exponent at the most irregular points is

Hmin
X . Prop. 2.7, in conjunction with Theorem 2.6, sharpens this result by yielding the sharp

modulus of continuity at these points. In the case of generalized Gaussian mixture models, the

last statement will also be sharpened in Sec. 3.4 which will yield the almost everywhere sharp

modulus of continuity.

• The function

H 7→ sup
α∈(0,H]

H
ρ(α)

α

is increasing on (0, Hmax
X ] and takes the value 1 for h = Hmax

X , which is in accordance with (39).

3.2 Multifractal analysis of SDRWS

Multifractal properties of RWS were first obtained as a by-product of a general framework introduced

in [39], now referred to as ubiquity methods. Let K = [0, 1]d, let S = (xn)n≥0 be a sequence of points

in K, and let L = (ln)n≥0 be a sequence of positive numbers with ln → 0 as n → ∞. The pair (S,L)

satisfies the ubiquity condition if almost every point of K belongs to the set

E = lim sup
n

B(xn, ln). (30)

It satisfies the strong ubiquity condition if every point of K belongs to E. Ubiquity methods

provide lower bounds on the Hausdorff dimension of the sets

Eη = lim sup
n

B(xn, (ln)
η). (31)
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The first results of this type were obtained in [39, 9] when (xn)n≥0 is an i.i.d. sequence equidistributed

with respect to the Lebesgue measure on K. These results were used to derive the multifractal spectra

of lacunary wavelet series and subsequently of RWS. In these cases, each xn identifies the unique

dyadic cube λ at generation j corresponding to the wavelet coefficient Cλ.

In such random settings, the ubiquity condition follows directly from the Borel-Cantelli lemma, while

the strong ubiquity condition is ensured by almost-sure covering results for random sets; see [47] and

the references therein. Since then, the ubiquity framework has been considerably extended; see, for

example, [15, 14, 5] and ref. therein.

In the more general setting of SDRWS, however, the sequence (xn)n≥0 is no longer i.i.d., and the

independence assumption is replaced by the weaker notion of random block independence, where the

scale structure is emphasized.

Definition 3.1. A random block independent dyadic sequence in K is a sequence (Kj), each Kj being

constituted by dyadic cubes λj,k ⊂ K, of generation j (i.e. of width 2−j), such that for each j, the

cubes λj,k are independently drawn with the same probability pj among the 2dj dyadic subcubes of K

of generation j.

Note that no assumption is made on possible correlations between the locations of the cubes λj,k ⊂ Kj

across different generations j.

The expectation of the number of elements of Kj is

E(Card(Kj)) = 2djpj := Nj . (32)

We impose the following exponential growth condition on the Nj : There exists a subsequence (jn)

such that

∃α, β with 0 < α < β < d such that, for n large enough, 2αjn ≤ Njn ≤ 2βjn . (33)

We can now state the following block ubiquity result.

Proposition 3.2. Let (λj,k) be a random block independent dyadic sequence satisfying (33). Let

L = (lj) be the sequence

lj =

(
C log(Nj)

Nj

)1/d

, (34)

where C ≥ 4 is picked so that 1/lj is a power of 2. Then, a.s. ∃N such that, for all ∀n ≥ N , the

dyadic cubes of width ljn that include λjn,k for k ∈ Kj form a covering of K.

In particular, the couple constituted by the centers of the cubes λj,k and the radii 2dlj almost

surely satisfies the strong ubiquity condition.

Proof. Let j be one of the jn. We partition the cube K = [0, 1]d into dyadic subcubes of sidelength lj

as defined in (34). Let Cj,ℓ be one of these subcubes; it contains

mj = 2dj(lj)
d (35)
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dyadic cubes of generation j; therefore, the probability that none of the (λj,k)k∈Kj
is inside Cj,ℓ is

(1− pj)
mj .

Since there are (lj)
−d cubes Cj,ℓ, it follows that the probability that at least one of the subcubes

Cj,ℓ contains no element of Kj is bounded by

Pj = (lj)
−d(1− pj)

mj .

We will show that
∑
Pjn < ∞ which, by the Borel-Cantelli Lemma, will imply that, for n large

enough, all subcubes Cjn,ℓ will contain at least one element of Kjn .

We now estimate Pj . We have

log(Pj) = −d log(lj)−mjpj +O(mj(pj)
2).

Since the sequence lj decays exponentially, and using (32), (34), and (35), we obtain

log(Pj) = log(Nj)− log(C log(Nj))− (lj)
dNj(1 + o(1))

= (1− C) log(Nj) + o(log(Nj))).

Since C ≥ 4, it follows from the exponential growth assumption (33) that
∑

n Pjn < ∞. By the

direct part of the Borel-Cantelli lemma (which does not require independence), we conclude that,

with probability 1, for all sufficiently large n, each subcube Cjn,ℓ contains at least one cube λjn,k.

We will now apply this framework to the setting supplied by SDRWS. We first consider the value

of the uniform Hölder exponent Hmin
X . In the case of RWS, it is determined as follows.

Let W =

α : ∀ε > 0 :
∑
j

2djρj[α− ε, α+ ε] = +∞

 , and Hmin
1 = infW. (36)

If X is a RWS, then a.s.

Hmin
X = Hmin

1 .

As regards the uniform Hölder exponent of SDRWS, the value of Hmin
X depends on the following

quantity which, may differ from Hmin
1 .

Let W̃ =
{
α : ∀ε > 0, ∃η > 0, ∃jn → +∞ : 2djnρjn [α− ε, α+ ε] ≥ 2ηjn

}
, and Hmin

2 = inf W̃ .

Clearly, Hmin
1 ≤ Hmin

2 . We will first check the following result, which replaces Proposition 4.8 and

Appendix A of [27] for RWS: If X is a SDRWS, then

a.s. Hmin
1 ≤ Hmin

X ≤ Hmin
2 . (37)

Proof: The first inequality follows from the fact that the multifractal spectrum of a SDRWS is

bounded by (28) (this is actually true for any wavelet series, see [9]). The second inequality follows

for the fact that, by definition of Hmin
2 , there exists collections of wavelet coefficients of exponential
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cardinality and of size ∼ 2−H
min
2 j , and the result follows from the block ubiquity result.

The following result, which extends Theorem 3.1 to the setting of SDRWS, is a consequence of the

previous random block ubiquity property.

Theorem 3.3. Let X be a SDRWS. With probability one, the sample paths of X satisfy the following

properties:

1. Their multifractal support is SX = [Hmin
X , Hmax

X ];

2. Their multifractal spectrum is given by

∀H ∈ SX , DX(H) = H sup
α∈(0,H]

ρ(α)

α
; (38)

3. For almost every x,

hX(x) = Hmax
X . (39)

Remark: Note that this result leaves open the precise value of Hmin
X ; the only information we

have is that it takes value in the interval [Hmin
1 , Hmin

2 ]. In other words, the multifractal spectrum of

a SDRWS may differ from the corresponding RWS (with the same distributions of wavelet coefficients

at each scale) only on the interval [Hmin
1 , Hmin

X ] where it takes the value 0 for RWS and it takes the

value −∞ for SDRWS. For H ≥ Hmin
X , the spectra of both processes coincide.

We now sketch how the proof of Theorem 3.1 has to be modified in order to apply to SDRWS. We

first note that, in [9], the upper bounds for the multifractal spectra in (38) are obtained in terms of

large deviation spectra derived form the scale by scale distributions, and therefore are derived without

specific dependence assumptions, and thus remain valid for SDRWS.

In order to obtain the lower bounds, we will show how block ubiquity techniques apply to the

setting of SDRWS. We won’t detail the full proof, but rather point to the locations where the scale by

scale independence is used in the RWS case, and show how to replace the corresponding arguments

using block ubiquity. We will actually refer to the more recent proof of [27] which fully uses the

more general versions of ubiquity techniques, and also uses the notion of wavelet p-leaders, which were

introduced in the meantime, and therefore it will allow for a simpler and more pedagogical derivation;

note that in [27], RWS are processes indexed by R, but the reader will easily check that the results

adapt to the d-variable random fields.

The key argument for the derivation of the lower bound of the multfractal spectrum in [27] is

supplied by Theorem 4.13 which yields the existence of a a gauge function with the right scaling

properties. It is derived in the specific case of RWS by. a classical a.s. covering lemma of [0, 1], and it

is replaced here, as explained before, by Proposition 3.2. In the case of SDRWS, in order to apply this

Proposition, we have to verify that, at the relevant values for H for which the supremum is attained

in (38), the number of corresponding wavelet coefficients of size ∼ 2−Hj is exponentially large, which
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allows to apply Proposition 3.2. But this simply follows from the fact that the function defined by

the right hand side of (38) is increasing, and therefore, as soon as it is positive, it corresponds to the

exponentially large case mentioned above.

3.3 Generalized Gaussian mixture models

We now check what these general results yield in the case of generalized Gaussian mixture models

supplied by Definition 2.2. We make the following additional assumptions on the triple

(G, (pj)j≥0, (C
(i)
j,k)j≥0,k∈Zd,i∈[d]):

Assumption 2. • Cj = 2−γj for a γ > 0;

• ∃β ∈ (0, 1) and δ > 0 : 2(β−1)j ≤ pj ≤
1

jδ
;

• The distribution G is a generalized Gaussian.

Theorem 3.1 shows that, in order to obtain the multifractal spectrum of the sample paths of this

model, one has to determine its large deviation spectrum ρ(α). Denote

p(α, ε, j) = P(2−(α+ε)j ≤ |C(i)
j,k| ≤ 2−(α−ε)j).

Then

p(α, ε, j) = pj P(Cj · |Y | ∈ [2−(α+ε)j , 2−(α−ε)j ]).

Since Cj = 2−γj , it follows that

p(α, ε, j) = pj

(
Fα(2

−(α−γ+ε)j)− Fα(2
−(α−γ−ε)j)

)
,

where the function Fα is defined by (19). The decay rate of Fα(a) when a→ +∞ implies that

If α− γ < 0, then Fα(2
−(α−γ+ε)j) << 2−Nj , ∀N > 0

so that

if α < γ, then ρ(α) = −∞.

If α− γ = 0, then p(α, ε, j) ∼ pjFα(0) when j → +∞ so that

if α = γ, then ρ(α) = 1 + lim sup
j→+∞

log(pj)

log(2j)
.

If α − γ > 0, then using the fact that generalized Gaussians have a continuous nonvanishing density

in the neighbourhood of 0, we obtain that p(α, ε, j) ∼ pj2
−(α−γ−ε)j when j → +∞ so that

if α > γ, then ρ(α) = 1− α+ γ + lim sup
j→+∞

log(pj)

log(2j)
.

The multifractal spectrum of the sample paths of X stated in the following proposition follows then

from (28): Let

ω = lim sup
j→+∞

log(pj)

log(2j)
.

The assumptions on the sequence pj imply that ω ∈ [−1, 0].
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Proposition 3.4. Let X be a RWS given by the generalized Gaussian mixture model with Cj = 2−γj

and pj ≥ 2(ε−1)j for an ε > 0. The multifractal spectrum of almost every the sample paths of X is

given by  DX(H) =
H(1 + ω)

γ
if H ∈

[
γ,

γ

1 + ω

]
= −∞ else.

Remark 7. This result highlights a qualitative distinction between the cases ω = 0 and ω ̸= 0.

When ω = 0, the sample paths are monohölder: the Hölder exponent is constant and equal to H = γ

everywhere. By contrast, when ω ̸= 0, the sample paths become multifractal, and the Hölder exponent

ranges over the entire interval [γ, γ/(1 + ω)].

We plan to investigate in future work the borderline case ω = 0. A specific example of interest is when

pj = 1/jδ for some δ > 0. In this regime, although the sample paths remain monohölder, the modulus

of continuity exhibits logarithmic fluctuations.

3.4 Almost everywhere modulus of continuity of GMM

In this section, we sharpen the last statement of Theorem 3.1 by determining the sharp a.e. modulus

of continuity of generalized Gaussian mixtures. A consequence of this result will be that the smallest

and largest possible pointwise moduli of continuity will have been determined exactly. We will prove

the following result.

Proposition 3.5. Let X be a SDRWM where Yj,k is a normalized generalized Gaussian and addi-

tionally Cj and j · 2jpj are decreasing sequences. Let θ be the modulus of continuity defined by the

conditions

θ(lj) = Cj and θ is constant on [lj , lj−1],

then the a. e. modulus of continuity of X cannot be a o(θ(h)) and θ(h)| log(h)| is an a. e. modulus of

continuity of X.

Proof. Let b > 0 be defined by the condition

P(|Yj,k| ≥ b) = 1/2.

We now consider the random collection C of couples (j, k) such that |Yj,k| ≥ b. They are also drawn at

random and independently with probability qj = pj/2. Let us now consider the intervals Ij,k of width

lj = 1/j(2jpj) which are centered at such a point k ·2−j where (j, k) ∈ C. A given point x0 ∈ (0, 1) has

probability rj,k = 1/(j · 2jqj) to belong to one of the Ij,k; since a given couple (j, k) has probability qj

to be chosen, and since there are 2j coefficients at each scale,∑
j,k

rj,kqj =
∑
j

2jrj,kqj =
∑
j

1/j = +∞.

It follows from the Borel-Cantelli lemma that almost every x0 belongs to an infinite number of intervals

Ij,k. Let now x0 be such a point. First, we remark that Theorem 2.6 can be rewritten as follows (see
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[42]) : If θ is a modulus of continuity of f at x0, then

∀j, k, |i| ≤ Cθ

(
2−j +

∣∣∣∣x0 − k

2j

∣∣∣∣) . (40)

Applying this criterium to (j, k) ∈ C, we see that, if θ1 is a modulus of continuity at x0 then θ1(lj)

cannot be a o(Cj). Therefore, the a. e. modulus of continuity of X cannot be a o(θ(h)).

In order to obtain a modulus of continuity which holds almost everywhere, we now pick intervals Ij,k

of width lj = 1/j2(2jpj) which are centered at the point k · 2−j where y − j, k ̸= 0. A given point

x0 ∈ (0, 1) has probability rj,k = 1/(j2 · 2jqj) to belong to one of the Ij,k; by the same argument as

above, we now have ∑
j,k

rj,kqj =
∑
j

2jrj,kqj =
∑
j

1/j2 < +∞.

It follows from the Borel-Cantelli lemma that almost every x0 belongs to a finite number of intervals

Ij,k. Let now x0 be such a point. Using now the converse part of Theorem 2.6, we obtain that

h 7→ θ2(h)| log(h)| is an a. e. modulus of continuity of X.

4 Estimation of the uniform Hölder exponent

To simplify the presentation of the method, we assume in this section that d = 1. Since

our motivation comes from stochastic processes, we now consider X = (Xt)t∈R+ .

In [62] we provided estimations of the multifractality parameters c1 and c2 which encapsulate key

information, respectively on the location of the maximum of the multifractal spectrum (which can be

interpreted as the regularity exponent most often met in the data) and on the width of the spectrum

(and therefore on the range of regularity exponents that are met in the data). In the present article,

we complement this study by providing and estimation of the third most important multifractality

parameter: the uniform Hölder exponent Hmin
X which describes the uniform Hölder regularity of a

function, a measure or a Schwartz distribution X. Formally, it is defined (see for instance [44]) by

Hmin
X = sup {α : X ∈ Cα(R+)} .

This parameter proves highly practical due to its physical interpretation: in turbulence, Hmin
X high-

lights the most singular structures within a turbulent flow, often associated with sharp gradients or

extreme dissipation events; in finance, it captures abrupt changes or volatility spikes in time series

data; and in image analysis, Hmin
X identifies the sharpest edges or transitions in fractal-like textures.

It has been used in many applications as a classification parameter, and therefore the question of its

statistical estimation is important.

Related work. The estimation of multifractality parameters has a long history. Early contributions

focused on increment- and variation-based estimators of local Hölder exponents [35], while global

multiscale methods such as the Wavelet Transform Modulus Maxima (WTMM) [61], Multifractal

Detrended Fluctuation Analysis (MFDFA) [48], and wavelet-leader regressions [2] have been used to

estimate extremal pointwise exponents (hmin, hmax), the spectral mode hpic, and the log-cumulants
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cq, including in particular c1 and c2 [36, 83, 20]. These approaches rely on log-log regressions across

scales, which require sufficiently long signals and may lead to large estimation variances, especially

in multivariate settings [4, 76]. To address these limitations, Bayesian methods have been proposed

for the estimation of multifractality parameters in images and multivariate fields, relying on Whit-

tle approximations and gamma Markov random field priors [20, 82]. In parallel, significant work

has focused on estimating structural parameters in random wavelet series and multifractal stochastic

models, including log-normal and log-infinitely-divisible cascades [12, 18] and Markov-switching mul-

tifractal processes [17]. These parametric models complement nonparametric approaches and place

the estimation of Hmin
X within a broader inference framework.

4.1 Estimation procedure

In contrast with the parameters c1 and c2 whose estimates were based on the laws of the log-leaders

of the wavelet coefficients, the quantity Hmin
X is derived directly from the wavelet coefficients: it can

be computed through a log-log plot regression as

Hmin
X = lim inf

j→+∞

log
(
supk |Cj,k|

)
log(2−j)

. (41)

We now study the uniform Hölder exponent of a semi-dependent random wavelet mixture (SDRWM)

X = (Xt)t∈R+ given by

Xt =
∑
k∈Zd

Ck φk(t) +
∑

j≥0, k∈Zd

Cj,k ψj,k(t) (42)

where the (Cj,k)j,k satisfy Definition (2.2). More precisely, we focus on the wavelet-coefficient model

(G, (pj)j≥0, (Cj,k)j≥0,k∈Z), which is assumed to satisfy the following conditions:

Assumption 3. 1. For each resolution level j ≥ 0 and spatial index k ∈ Z,

(i) P(Cj,k = 0) = 1− pj, where we assume pj = 2(η−1)j for some η ∈ (0, 1);

(ii) Conditionally on Cj,k ̸= 0, one has Cj,k
L
= Cj , Y , where Y has density G.

2. The coefficients are of the form

Cj,k = 2−αjDXj,k, (43)

where α > 0 is a fixed decay exponent and D > 0 is a scaling constant.

3. For any j ≥ 0 the random variables (Xj,k)k are i.i.d. and generalized Gaussian (see (6)), with

density

fβ(x) =
β

2Γ( 1β )
e−|x|

β
= κβe

−|x|β , (44)

for some β > 0.

Remark 8. Condition (i) ensures that there are approximately 2ηj non-vanishing wavelet coefficients,

randomly located in [0, 1], each of magnitude 2−αj (with α > 0). When η = 1, the coefficients are
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non-lacunary, and the model reduces to the standard SDRWS case. Condition 3 corresponds to the

semi-dependent case: the wavelet coefficients are independent at a given scale j, but no independence

assumption is imposed between coefficients located at different scales.

The following result, which may be viewed as a corollary of Proposition 2.4, provides an explicit

expression for the uniform modulus of continuity of the RWM satisfying Assumption 3.

Proposition 4.1. Let X be the SDRWM with coefficients satisfying Assumption 3. Then, Hmin
X = α.

Proof. Let us assume, without loss of generality, that β > 1. The case β ≤ 1 can be handled in the

same way by using the version of Mills’ ratio given by (59) (β < 1) or exact computation (60) (beta =).

Let for any (j, k) ∈ N× Z, Cj,k := 2−αjDXj,k (with β > 1). For any x ∈ R∗+, by independence of the

wavelet coefficients (Cj,k)k,

P
(
sup
k

|Cj,k| ≤ x
)
=

∏
k

P(|Cj,k| ≤ x)

=
[
1− pjP(|Xj,k| ≥ 2αjx/D)

]Nj

,

where Nj = C1pj2
j = C12

ηj . In the one hand, choosing x such that pjP(|Xj,k| ≥ 2αjx/D) = 1/Nj , we

get

lim
j→∞

P
(
sup
k

|Cj,k| ≤ x
)
= e−1.

On the other hand, it follows from Mills ratio (56) applied to generalized Gaussian random variables

with β > 1, that, for any x > 0,

P(|Xj,k| ≥ 2αjx/D) ∼
j→∞

2fβ(2
αjx/D)

β(2αjx/D)β−1
,

Ignoring the factor Γ(1/β)(2αjx/D)β−1 at first order and setting

x =

[
Dβ

(
(2η − 1)j log(2) + log(C1)

)
2αjβ

]1/β
,

we get

log
(
sup
k

|Cj,k|
)

∼
j→∞

log
(
(log(2)(2η − 1)Dβ)1/βj1/β2−αj

)
,

so that Hmin
X = lim infj→+∞ log

(
supk |Cj,k|

)
/ log(2−j) = α. Hence the result.

To construct an estimator of Hmin
X , we need a more precise understanding of the behavior of the

random variables log
(
supk |Cj,k|

)
/ log(2−j) defined in (41) for large j. This amounts to providing a

quantitative version of Proposition 4.1. The estimation procedure relies on the following key lemma.

Lemma 4.2. Let X be the RDWM with coefficients defined by (43) and (44). Let ε > 0. For β > 0,

set θ1 = 3(1− β)/(2β), θ2 = (1− β)/(2β), δ = −(1− β)/(2β), c′ = κβ/(2β − 1) and c′′ = κβ/β. For

c > 0, set Cη,3(c) = cC1 log(2)
(1−β)/β, Cη,4(c) = c log(2)(1−β)/β.
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• Case β > 1. Set j1(ε) and j2(ε) such that

e−C3(c′)j1(ε)δ = ε/2 and e−Cη,3(c′′)j2(ε)−δ/(1−Cη,4(c′′)2−j2(ε)j2(ε)−δ) = 1− ε/2. (45)

For any j ≥ max(j1(ε), j2(ε)), the following holds with probability at least 1− ε:

sup
k

|Cj,k| ∈
[
2−αjD(ηj log(2) + θ1 log(j)) , 2

−αjD(ηj log(2) + θ2 log2(j))
]
.

• Case β < 1. Set j1(ε) and j2(ε) such that

e−Cη,3(c′′)j1(ε)−δ
= ε/2 and e−Cη,3(c′′)

[
1+Cη,4(c)jδ/(2(1−Cη,4(c)jδ)

]
= 1− ε/2.

For any j ≥ max(j1(ε), j2(ε)), the following holds with probability at least 1− ε:

sup
k

|Cj,k| ∈
[
2−αjD(ηj log(2) + θ2 log(j)) , 2

−αjD(ηj log(2) + θ1 log2(j))
]
.

• Case β = 1. Set j1(ε) and j2(ε) such that

e−C1j1(ε) = ε/2 and e−C1j2(ε)−1
[
1−C1j2(ε)−1/(2(1−C1j2(ε)−1))

]
= 1− ε/2.

For any j ≥ max(j1(ε), j2(ε)), the following holds with probability at least 1− ε:

sup
k

|Cj,k| ∈
[
2−αjD(ηj log(2)− log(j)) , 2−αjD(ηj log(2) + log2(j))

]
.

Proof. The proof is postponed to Appendix C.2.

Estimation of Hmin
X from quantiles We directly deduce from the Lemma 4.2 that for any

j ≥ max(j1(ε/2), j2(ε/2)), we have with probability at least 1− ε/2:

sup
k

|Cj,k| ∈
[
2−αjD(ηj log(2) + θℓ log(j)) , 2

−αjD(ηj log(2) + θu log(j))
]
.

as well as

sup
k

|C2j,k| ∈
[
2−2αjD(2ηj log(2) + θℓ log(2j)) , 2

−2αjD(2ηj log(2) + θu log(2j))
]
,

where θℓ = θ11{β≥1} + θ21{β<1} and θu = θ21{β≥1} + θ11{β<1}. For any j ≥ 0, define

Zj =
log

(
supk |C2j,k|/ supk |Cj,k|

)
log(2−j)

. (46)

Then, we have

P(Zj ≥ ℓj) ≥ 1− ε and P(Zj ≤ uj) ≥ 1− ε, (47)

where we set
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ℓj =
log

(
2−2αjD(2ηj log(2)+θℓ log(j))
2−αjD(ηj log(2)+θu log(j))

)
log(2−j)

=
log

(
2−αj 2ηj log(2)+θℓ log(j)

ηj log(2)+θu log(j)

)
log(2−j)

= α+ rℓj , (48)

and

uj =
log

(
2−2αjD(2ηj log(2)+θu log(j))
2−αjD(ηj log(2)+θℓ log(j))

)
log(2−j)

=
log

(
2−αj 2ηj log(2)+θu log(j)

ηj log(2)+θℓ log(j)

)
log(2−j)

= α+ ruj , (49)

with

rℓj =
log

(
2ηj log(2)+θℓ log(j)
ηj log(2)+θu log(j)

)
log(2−j)

and ruj =
log

(
2ηj log(2)+θu log(j)
ηj log(2)+θℓ log(j)

)
log(2−j)

. (50)

To estimate Hmin
X = α, it is then enough to have estimates of ℓj and uj and we have

Hmin
X =

(ℓj − rℓj) + (uj − ruj )

2
.

Note moreover that follows from (47) that

qjp := qj1−ε :=
ℓj + uj

2

is the (1− ε)-quantile of the random variable Zj .

Estimation of ℓj and uj Consider i.i.d. copies X1, . . . , Xn of the process X defined in (1). For any

l ∈ {1, . . . , n}, set

Z l
j =

log
(
supk |C l

2j,k|/ supk |C l
j,k|

)
log(2−j)

.

As a reminder, the empirical cumulative distribution function associated to the sample {Z1
j , . . . , Z

n
j }

is defined as:

F̂ j
n(x) =

1

n

n∑
l=1

1{Zl
j≤x}

.

The Z l
j are i.i.d. random variables distributed as the variable Zj defined by (46). Let p = pε = 1− ε.

As explained in the Appendix, the idea of the so-called Peaks-Over-Threshold (POT) method is to first

extract the excesses Y i
j = Z

(n−kjn+i)
j − Z

(n−kjn)
j for i ∈ {1, . . . , kjn}. Under the Pickands-Balkema-de

Haan theorem the conditional excesses sequence (Y i
j )i≥1 converges in distribution to a random variable

Yj distributed according to a generalized Pareto distribution

FYj (y) = P(Yj > y|Yj > 0) = 1− (1 + ξjy/σj)
−1/ξj , y > 0, 1 + ξjy/σ > 0,

where ξj > 0 is the shape (tail index) and σj = σj,n is a scale that may depend on vn. Define the

POT estimators (see Appendix B) by

ℓ̂j := vn +
σ̂j

ξ̂j

[(kjn
np

)−ξ̂j
− 1

]
and ûj := ℓ̂j −

(
Z

(n−kjn+1)
j − Z

(n−kjn)
j

)
. (51)
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where the estimators (ξ̂j , σ̂j) can be obtained by the maximum of likelihood estimator

(ξ̂j , σ̂j) := (ξ̂k
j
n

j , σ̂k
j
n

j ) = argmax
(ξ,σ)

n∑
i=1

log
(
fYj (yi; ξ, σ)

)
Final estimator Then, we consider

Ĥmin
X =

1

2|J(ε)|
∑

j∈J(ε)

[
(ℓ̂j − rℓj) + (ûj − ruj )

]
, (52)

where J(ε) = {j, j ≥ max(j1(ε), j2(ε))}.

Remark 9. The choice of the random variables Zj (46) may appear unconventional. In the context of

log-log regressions, one typically considers the ratio

log
(
supk |Cj,k|

)
log(2−j)

.

In contrast, we focus on the numerator,

log

(
supk |C2j,k|
supk |Cj,k|

)
,

which allows us to mitigate the potentially detrimental influence of the normalizing constant D and

thereby enhances the robustness of our procedure with respect to it.

We can deduce a confidence interval for the estimation of Hmin
X :

Theorem 4.3. Let δ ∈ (0, 1). With probability 1− δ,

Hmin
X ∈

[
1

2|J(ε)|
∑

j∈J(ε)

(ℓ̂j − rℓj) + (ûj − ruj )

1 + z1−δ/(2/|J(ε)|)

√
V̂j,k/k

j
n

,
1

2|J(ε)|
∑

j∈J(ε)

(ℓ̂j − rℓj) + (ûj − ruj )

1− z1−δ/(2/|J(ε)|)

√
V̂j,k/k

j
n

]
. (53)

where z1−δ/2 is the (1 − δ/2)-quantile of the standard normal distribution and V̂j,k = ξ̂2j,k + (1 +

ξ̂j,k)
2ε/(2(1− ε/2)).

Proof. Let δ > 0. Follows from Theorem B.1, that for all j ∈ [J(ε)] with probability at least 1 −
δ/|J(ε)|,

qjp =
ℓj + uj

2
∈

[
(ℓ̂j + ûj)/2

1 + z1−δ/(2|J(ε)|)

√
V̂j,k/k

j
n

,
(ℓ̂j + ûj)/2

1− z1−δ/(2|J(ε)|)

√
V̂j,k/k

j
n

]
, (54)

where z1−δ/2 is the (1−δ/2)-quantile of the standard normal distribution and V̂j,k = ξ̂2j,k+(1+ξ̂j,k)
2p/p.

For all j ∈ [J(ε)], let

Ej =

{
(ℓ̂j + ûj)/2

1 + z1−δ/(2/|J(ε)|)

√
V̂j,k/k

j
n

≤ ℓj + uj
2

≤ (ℓ̂j + ûj)/2

1− z1−δ/(2/|J(ε)|)

√
V̂j,k/k

j
n

}
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Note that P(Ej) ≥ 1− δ/|J(ε)| for all j ∈ [J(ε)]. Consider the event

A =

{
1

2|J(ε)|
∑

j∈J(ε)

(ℓ̂j − rℓj) + (ûj − ruj )

1 + z1−δ/(2/|J(ε)|)

√
V̂j,k/kn

≤ Hmin
X

≤ 1

2|J(ε)|
∑

j∈J(ε)

(ℓ̂j − rℓj) + (ûj − ruj )

1− z1−δ/(2/|J(ε)|)

√
V̂j,k/kn

}

=

{
1

2|J(ε)|
∑

j∈J(ε)

(ℓ̂j − rℓj) + (ûj − ruj )

1 + z1−δ/(2/|J(ε)|)

√
V̂j,k/kn

≤ 1

2|J(ε)|
∑

j∈J(ε)

[
(ℓj − rℓj) + (uj − ruj )

]

≤ 1

2|J(ε)|
∑

j∈J(ε)

(ℓ̂j − rℓj) + (ûj − ruj )

1− z1−δ/(2/|J(ε)|)

√
V̂j,k/kn

}

Using a union bound argument, we get

P(A) ≥ P
( J(ϵ)⋂

j=1

Ej

)

≥ 1−
J(ϵ)∑
j=1

P(Ec
j )

≥ 1− |J(ϵ)|/(δ|J(ϵ)|) = 1− δ.

Hence the result.

4.2 Numerical experiments

In this section, we empirically assess the estimation procedure for Hmin for random wavelet series

described in the previous section. More specifically, we investigate the finite-sample behavior of the

proposed peaks-over-threshold (POT)-based estimator (52) of the uniform Hölder exponent. Syn-

thetic multiscale coefficient fields with known theoretical regularity are generated, and we evaluate

the accuracy of both the point estimator (52) and the associated confidence interval (53). Particular

attention is devoted to the choice of the intermediate sequence (kn)n, which is selected via bootstrap

minimization of the mean squared error (MSE) of the Hill estimator.

Procedure For given parameters α > 0, D > 0, and β > 0, we simulate independent generalized

Gaussian wavelet coefficients

Cℓ
j,k = D2−αjX

(ℓ)
j,k , 1 ≤ ℓ ≤ n, 1 ≤ j ≤ Jmax, 1 ≤ k ≤ 2j ,

where Xℓ
j,k ∼ GG(0, 1, β) has density f : x 7→ β/(2Γ(1/β)) exp(−|x|β).

Throughout, we set n = 105 and Jmax = 14, which is the largest scale level for which the simula-

tion remains computationally feasible. Beyond this point, the exponential growth of the number of

coefficients makes the procedure considerably slower and unstable in practice.
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For each replicate, we compute the quantities Zℓ
j defined in (46), up to scale j = 7 according to

their construction. We then retain the set of scales J(ε) = {4, 5, 6, 7}, which correspond to the highest

available resolutions. In the theoretical analysis, the scale index j is considered asymptotically large,

while in practice only a finite number of scales can be used. Accordingly, J(ε) is chosen to consist of

the largest available scales to closely approximate this asymptotic behavior. The exceedance proba-

bility is fixed at ε = 10−5.

Tuning Parameter As described in Appendix B, the Peaks-Over-Threshold (POT) method starts

by extracting the exceedances Yi = Z(n−kn+i)− vn, i = 1, . . . , kn, where the threshold is vn = Z(n−kn).

The choice of the number of upper order statistics kn plays a central role in tail estimation: selecting

too few observations results in high variance, whereas including too many introduces bias. Following

the data-driven strategy proposed by [22], we determine kn through a bootstrap-based selection proce-

dure. For each candidate value of kn = k, the tail index ξ is first estimated from the top k exceedances.

Then, for this same k, we generate B bootstrap resamples drawn with replacement from the original

sample, recompute the tail index on each bootstrap sample, and evaluate the corresponding mean

squared error (MSE) between the bootstrap estimates and the original estimate. The optimal kn is

selected as the value of k that minimizes this bootstrap MSE, thus achieving a principled trade-off

between bias and variance. In our study, we consider a regularly spaced grid Kgrid = 10 : 10 :
⌊
n
5

⌋
, and

perform B = 300 bootstrap replications. This choice provides a sufficiently fine resolution for select-

ing kn, while ensuring the standard requirement kn/n→ 0 for the consistency of semi-parametric tail

estimators. It also remains computationally feasible, offering a good compromise between statistical

accuracy and numerical efficiency.

Results and interpretation

Table 1 reports the estimated 95% confidence intervals for the minimal Hölder exponent Hmin
X

under various choices of the parameters α, β, and D. These numerical experiments are designed to

assess the finite-sample performance of the proposed Peaks-Over-Threshold (POT) estimator and to

evaluate its robustness with respect to the underlying model parameters.

We first examine the effect of the tail parameter β by fixing D = 0.5 and considering both β < 1

and β > 1. The resulting confidence intervals exhibit only minor variations across different values of

β, indicating that the estimator is largely insensitive to the tail behavior of the generalized Gaussian

coefficients. This robustness with respect to β suggests that the POT-based approach performs reliably

across a broad range of heavy-tailed regimes.

Next, we analyze the influence of the scale decay parameter α. For each fixed β, the width of

the confidence intervals increases monotonically with α, in agreement with the theoretical scaling of

the wavelet coefficients (43). Smaller values of α correspond to slower decay across scales, leading to

larger extreme coefficients and consequently narrower confidence intervals. In contrast, larger α values

induce faster decay, yielding smaller extremes and increased relative variability in their estimation,

which results in wider intervals. Therefore, the decay rate α directly controls the magnitude of the
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Table 1: Estimated 95% confidence intervals for

the uniform Hölder exponentHmin
X with fixed am-

plitude D = 0.5 and varying scale decay α and

tail parameter β.

β α = Hmin
X Ĥmin

X CI Size

0.8

0.5 0.501 [0.499, 0.504] 0.005

1 0.998 [0.993, 1.003] 0.010

5 4.983 [4.958, 5.008] 0.049

10 9.991 [9.939, 10.043] 0.104

50 49.99 [49.728, 50.255] 0.527

3

0.5 0.498 [0.495, 0.501] 0.005

1 0.997 [0.992, 1.001] 0.009

5 4.998 [4.975, 5.021] 0.046

10 9.997 [9.950, 10.044] 0.094

50 49.996 [49.759, 50.236] 0.476

Table 2: Estimated 95% confidence intervals for

the uniform Hölder exponent Hmin
X with fixed tail

parameter β = 4 and varying scale decay α and

amplitude D.

D α = Hmin
X Ĥmin

X CI Size

0.5

0.5 0.498 [0.495, 0.500] 0.005

1 0.998 [0.993, 1.003] 0.010

5 4.998 [4.972, 5.024] 0.052

10 9.998 [9.946, 10.050] 0.104

50 49.998 [49.740, 50.258] 0.518

5

0.5 0.498 [0.495, 0.500] 0.005

1 0.998 [0.993, 1.003] 0.010

5 4.998 [4.972, 5.024] 0.052

10 9.998 [9.946, 10.050] 0.104

50 49.998 [49.740, 50.258] 0.518

extreme wavelet coefficients and, in turn, governs the precision of the POT-based estimator.

In Table 2, we investigate the effect of the amplitude parameter D for fixed β = 4, considering

two representative values, D = 0.5 and D = 5. The corresponding confidence intervals are nearly

identical across these choices, demonstrating that the estimator is essentially invariant with respect to

the amplitude of the coefficients. As in the previous experiments, the interval width remains primarily

driven by α, confirming that the decay parameter plays a dominant role in controlling estimation

variability.

Overall, these experiments demonstrate that the proposed estimator is robust with respect to both

the tail parameter β and the amplitude D. Moreover, the estimation error scales predictably with α,

in agreement with the theoretical behavior of the wavelet coefficients and the asymptotic properties

of the POT estimator. In summary, the proposed estimator provides accurate and reliable confidence

intervals for Hmin
X across a wide range of parameter settings. The estimator remains accurate and

stable over a broad range of heavy-tail parameters β and amplitudes D, with confidence interval

lengths consistently remaining small, thereby confirming the effectiveness of the POT-based approach.

5 Concluding remarks

In this paper, we refined classical uniform and pointwise regularity results concerning random wavelet

series (RWS) and we extended them to settings with dependent coefficients. We focused on the par-

ticular case commonly met in applications of generalized Gaussian mixture models. We broadened

the classical independent-scale setting to a semi-dependent random wavelet series (SDRWS) frame-

work, permitting arbitrary cross-scale dependence while preserving within-scale independence. In this

31



unified setting we specified known uniform moduli of continuity, we extended them to SDRWS and

mixture models, and we characterized the associated pointwise worst-case regularity. A new block

ubiquity theorem allowed to derive multifractal spectrum for SDRWS, which we specialized to gener-

alized Gaussian mixtures together with the almost-everywhere modulus of continuity. These results

elucidate in a coherent manner how cross-scale dependence shapes Hölder and multifractal features.

Finally, exploiting wavelet leaders, we constructed an estimator of the uniform Hölder (minimal) ex-

ponent Hmin and derived a theoretically grounded confidence interval. Empirical experiments confirm

the reliability of the inference and its confidence interval. Together with the estimation of the other

classical multifractality parameters c1 and c2 performed in the previous article [62], the addition of the

third one Hmin
X performed in the present paper now allows to consider questions that were addressed

previously in very particular parametric settings such as: Are the data monohölder or multifractal?

We considered laws of wavelet coefficients that are commonly met in the signal and image processing

litterature. However, a natural question is to determine if these hypotheses are compatible with the

natural consistency requirement that this hypothesis remains invariant under a change of wavelet

basis. Such verifications are common for the definition of function spaces defined by conditions on the

wavelet coefficients [57], but this problem does not seem to have been considered in other settings.

Another question of interest is to investigate applications of these results to models which satisfy

the the SDRWS assumptions; the conclusions of the present paper state that multifractal properties

are not really affected if the cross-scale independence assumption is dropped. A natural question

is to determine of some more refined multifractal analysis would be able to put in evidence such

results. Natural candidates are supplied by bivariate multifractal analyses of several different pointwise

regularity quantities derived from the data, see [43].

A Mills ratio

In probability theory, the Mills ratio [59] states that for a continuous real random variable X with

density f and for any x ∈ R,

I(x)

f(x)
= lim

ε→0

1

ε
P(x < X ≤ x+ ε|X > x), (55)

where for all x ∈ R, we define I(x) = P(X > x). Bounding (55) provides insights on the distribution

of the tails of a random variable. For instance, if X has a generalized Gaussian distribution with

density (44), for all x > 0,

I(x) ∼
x→∞

x1−βe−x
β

2Γ(1/β)
. (56)

This result can be refined by providing non-asymptotic bounds. We recall the following lemma, proved

in the companion paper.

Lemma A.1 (General bounds for Mills ratio). Let g : R → R be a twice differentiable positive function

such that g′ is positive on R∗+ and g′′ has a constant sign on R+. Assume, moreover, that there exists
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a function M : R+ → R+ such that for x > 0,

sup
t∈[x,∞)

∣∣∣∣ g′′(t)

(g′(t))2

∣∣∣∣ ≤M(x).

Let X be a real random variable with density f = κe−g, where κ > 0 is a normalisation constant. For

all x ∈ R, we define I(x) = P(X > x) =
∫∞
x κe−g(t)dt. Then,

∀x ∈ R∗+,
f(x)

g′(x)(1 +M(x)1{g′′>0})
≤ I(x) ≤ f(x)

g′(x)(1−M(x)1{g′′<0})
. (57)

Proof. For x ∈ R∗+,

κ−1I(x) =

∫ ∞
x

g′(t)

g′(t)
e−g(t)dt = lim

A→∞

[
− 1

g′(t)
e−g(t)

]A
x
−
∫ ∞
x

g′′(t)

(g′(t))2
e−g(t)dt

=
1

g′(x)
e−g(x) −

∫ ∞
x

g′′(t)

(g′(t))2
e−g(t)dt.

If g′′ > 0, we get that for any x ∈ R∗+,

e−g(x)

g′(x)
− κ−1M(x)I(x) ≤ κ−1I(x) ≤ e−g(x)

g′(x)
,

whereas if g′′ < 0,
e−g(x)

g′(x)
≤ κ−1I(x) ≤ e−g(x)

g′(x)
+ κ−1m(x)I(x).

The two inequalities lead to (57).

Example 1. 1. Standard Gaussian. Taking g(x) = x2/2 and κ = (2π)−1/2, we findM(x) = 1/x2.

This boils down to the well-known result:

∀x > 0,
1√
2π

e−x
2/2

x(1 + 1/x2)
≤ I(x) ≤ 1√

2π

e−x
2/2

x
.

2. Generalized Gaussian with light tails (β > 1). Taking g(x) = |x|β and κβ = β/(2Γ(1/β))

with β > 1, clearly g′ > 0 and g′′ > 0 on R∗+. We have that for all x > 0, M(x) = (β − 1)/(βxβ)

and
1

2Γ(1/β)

e−x
β

xβ−1(1 + (β − 1)/(βxβ))
≤ I(x) ≤ 1

2Γ(1/β)

e−x
β

xβ−1
. (58)

3. Generalized Gaussian with heavy tails (0 < β < 1). Taking g(x) = |x|β and κ =

β/(2Γ(1/β)) with β < 1, we check that g′ > 0 and g′′ < 0 on R∗+. We have that for all

x > 0, M(x) = (1− β)/(βxβ) and that

x1−βe−x
β

2Γ(1/β)
≤ I(x) ≤ 1

2Γ(1/β)

x1−βe−x
β

(1− (1− β)/(βxβ))
. (59)

In the case of a Laplace random variable (β = 1), there is no need to invoke Mills’ ratio; the

integral can be computed explicitly. Indeed, for any x ≥ 0, one has

I(x) =
e−x

2
. (60)
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B Extreme quantile estimation

B.1 Definition and confidence interval

Let p ∈ (0, 1) and F be the cumulative distribution of a random variable Z. The p-quantile can be

defined as

qp =
1

2

[
inf{x : F (x) ≥ p}+ sup{x : F (x) ≤ p}

]
=:

1

2
[q+p + q−p ].

Consider Z1, . . . , Zn i.i.d. random variables. The empirical cumulative distribution function is defined

as:

F̂n(x) =
1

n

n∑
i=1

1{Zi≤x}.

Then the empirical p-quantiles are given by

q̂+p := inf{x : F̂n(x) ≥ p} and q̂−p := sup{x : F̂n(x) ≤ p} (61)

We set

q̂+p = Z(k) for p ∈ ((k − 1)/n, k/n] and q̂−p = Z(k) for p ∈ [k/n, (k + 1)/n),

where Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the order statistics. To remain consistent with Lemma (4.2),

we set p = pε = 1 − ε/2, where ε is very small, so that we target an extreme quantile. The (usual)

empirical estimator (61) based on the order statistic quickly becomes impractical, because on average

it needs 1/(1− p) observations lying beyond that quantile, that is tens of thousands when p = 0.9999,

and millions or even billions as p creeps closer to 1. To bypass this data-hungry bottleneck, we cannot

simply observe the tail; we must instead extrapolate it. The idea of the so-called Peaks-Over-Threshold

(POT) method is to first extract the excesses Yi = Z(n−kn+i) − vn for i ∈ {1, . . . , kn}, by choosing

for instance vn = Z(n−kn). With this choice, exactly kn observations exceed vn, so that Yi > 0.

Under the Pickands-Balkema-de Haan theorem the conditional excesses sequence (Yi)i≥1 converges in

distribution to a random variable distributed according to a generalized Pareto distribution

FY (y) = P(Y > y|Y > 0) = 1− (1 + ξy/σ)−1/ξ, y > 0, 1 + ξy/σ > 0,

where ξ > 0 is the shape (tail index) and σ = σn is a scale that may depend on vn. Estimators (ξ̂k, σ̂k)

are typically obtained by the maximum of likelihood estimator

(ξ̂k, σ̂k) := (ξ̂kn , σ̂kn) = argmax
(ξ,σ)

kn∑
i=1

log
(
fY (yi; ξ, σ)

)
=: argmax

(ξ,σ)
ℓ(ξ, σ)

where fY is the density function associated to FY . Then, the POT estimator of q+p is defined by

q̂POT,+
p = vn +

σ̂k

ξ̂k

[(kn
np

)−ξ̂k
− 1

]
. (62)

Assumption (T1) (First-order tail) Let for t > 1, U(t) = F←(1− 1/t), be the generalized inverse

function of F . Assume
U(tx)

U(t)
−−−→
t→∞

xξ, x > 0, with ξ > −1/2.
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Assumption (T2) (Second-order tail) There exist a function A such that A(t) → 0 and a constant

ρ ≤ 0 such that
U(tx)/U(t)− xξ

A(t)
−−−→
t→∞

xξ
xρ − 1

ρ
, x > 0.

Assumption (K) Let a sequence (kn)n≥0 satisfying

kn −−−→
n→∞

∞,
kn
n

−−−→
n→∞

0,
√
knA

( n
kn

)
−−−→
n→∞

0.

Assumption (E) Set the threshold vn = Z(n−k) and σk := σkn , let (ξ̂k, σ̂k) be the MLE of (ξ, σ).

Assume √
kn

 ξ̂k − ξ

σ̂k/σk − 1

 L−−−→
n→∞

N
(
0, Σξ,σ

)
, and ξ > −1/2.

We have the following result:

Theorem B.1. Let Z1, . . . , Zn be i.i.d. real-valued random variables with cumulative distribution

function F . Under Assumptions (T1), (T2), (K) and (E), we have

√
kn
q̂POT,+
p − q+p

q+p

L−−−→
n→∞

N (0, V (p, ξ))

with V (p, ξ) = ξ2 + (1 + ξ)2(1− p)/p.

We can define the left-hand version of the POT estimator:

q̂POT,−
p = q̂POT,+

p −
(
Z(n−k+1) − Z(n−k)),

as well as the average POT-estimator:

q̂POT
p =

q̂POT,+
p + q̂POT,−

p

2

The gap between the adjacent order statistics that straddle the threshold satisfies (classical spacing

theory) Z(n−k+1) − Z(n−k) = OP(n
−1). As kn = o(n) we get

√
kn(q̂

POT,+
p − q̂POT,−

p )
P−→ 0 so that the

two POT estimators are indistinguishable on the
√
kn-scale. Using Slutsky’s lemma, we get then

√
kn
q̂POT
p − qp

qp

L−−−→
n→∞

N (0, V (p, ξ)),

with V (p, ξ) = ξ2 + (1 + ξ)2(1− p)/p. We can deduce a confidence interval for qp:

Corollary B.2. Let δ > 0. Under the Assumptions of Theorem B.1, with probability at least 1− δ,

qp ∈

[
q̂POT
p

1 + z1−δ/2

√
V̂k/kn

,
q̂POT
p

1− z1−δ/2

√
V̂k/kn

]
, (63)

where z1−δ/2 is the (1− δ/2)-quantile of the standard normal distribution and V̂k = ξ̂2k + (1+ ξ̂k)
2p/p.
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C Proofs

C.1 Proof of Lemma 4.2 (case β > 1)

Let for any (j, k) ∈ N×Z, Cj,k := 2−αjDXj,k (with β > 1). The proof in the case β < 1 easily adapts

by using the Mills ratio (59).

Proceeding as in the proof of Proposition 4.1, we have, for any for any x ∈ R∗+,

P(sup
k

|Cj,k| ≥ x) = 1−
[
1− P(|Xj,k| ≥ 2αjx/D)

]Nj

,

where Nj = C12
ηj . Note that, from Mills ratio (56) applied to generalized Gaussians with β > 1, we

have for any t > 0,
fβ(t)

(2β − 1)tβ−1
≤ P(|Xj,k| ≥ t) ≤

fβ(t)

βtβ−1
.

Then, we get

1−
[
1− 1

2β − 1

fβ(2
αjx/D)

(2αjx/D)β−1

]Nj

≤ P(sup
k

|Cj,k| ≥ x) ≤ 1−
[
1− 1

β

fβ(2
αjx/D)

(2αjx/D)β−1

]Nj

.

Define Aj(c, x) =
[
1− ce−(2

αjx/D)β (2αjx/D)1−β
]Nj

for any c > 0 and x > 0. Then we have

P
(
sup
k

|Cj,k| ≥ x
)
≥ 1−Aj(c

′, x) and P
(
sup
k

|Cj,k| ≤ x
)
≥ Aj(c

′′, x), (64)

with c′ = κβ/(2β − 1) and c′′ = κβ/β. Note that fβ(x) = κβ2
−xβ/ log(2). For any x > 0, define

H(x) = c2−h(x)/ log(2)(h(x))(1−β)/β and h(x) = (2αjx/D)β.

Using that for u > 0 small we have

−u− u2

2(1− u)
≤ log(1− u) ≤ −u, (65)

we get, for x large enough,

−C12
ηjH(x)

[
1 +

H(x)

2(1−H(x))

]
≤ log(Aj(c, x)) ≤ −C12

ηjH(x).

Choose x such that h(x)/ log(2) = (2αjx/D)β/ log(2) = ηj + θ log2(j) where θ will be chosen later on.

Then, let us define

Cη,3(c) = cη(1−β)/βC1 log(2)
(1−β)/β and Cη,4(c) = cη(1−β)/β log(2)(1−β)/β . (66)

We have

−C12
ηjH(x) = −C12

ηjc2−(ηj+θ log2(j))
[
log(2)(ηj + θ log2(j))

](1−β)/β
= −Cη,3(c)η

−(1−β)/βj−θ[ηj + θ log2(j)]
(1−β)/β

∼
j→∞

−Cη,3(c)j
−θ+(1−β)/β,
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and

c2−C2(2αjx/D)β (2αjx/D)1−β = c2−(ηj+θ log2(j))
[
log(2)(ηj + θ log2(j))

](1−β)/β
∼

j→∞
−Cη,4(c)j

−θ+(1−β)/β,

Let δ = (β − 1)/(2β) > 0.

Case 1 Let θ = θ1 := 3(1− β)/(2β) We get, that for j large enough,

−Cη,3(c)j
δ

[
1 +

Cη,4(c)j
δ

2(1− Cη,4(c)2−j)jδ

]
≤ log(Aj(c, x)) ≤ −Cη,3(c)j

δ.

Then, for j large enough, by (64),

P(sup
k

|Cj,k| ≥ x) ≥ 1−Aj(c
′, x) ≥ 1− e−C3(c′)jδ ,

where, as a reminder, x is such that (2αjx/D)β = ηj log(2) + θ1 log(j), Cη,3(c) and Cη,4(c) are given

by (66). For sufficiently large j, the following holds with high probability:

sup
k

|Cj,k| ≥ 2−αjD
[
log(2)(ηj + θ1 log2(j))

]1/β
.

Case 2 Let θ2 = (1− β)/(2β) We get, that for j large enough,

−Cη,3(c)j
δ

[
1 +

Cη,4(c)j
δ

2(1− Cη,4(c)jδ

]
≤ log(Aj(c

′′, x)) ≤ −Cη,3(c
′′)j−δ.

Then, for j large enough, by (64),

P
(
sup
k

|Cj,k| ≤ x
)
≥ Aj(c

′′, x) ≥ e−Cη,3(c′′)
[
1+Cη,4(c)jδ/(2(1−Cη,4(c)jδ)

]
where, as a reminder, x is such that (2αjx/D)β = ηj log(2)+ θ2 log(j), Cη,3(c

′′) and Cη,4(c
′′) are given

in (66). For sufficiently large j, the following holds with high probability:

sup
k

|Cj,k| ≤ 2−αjD
[
log(2)(ηj + θ log2(j))

]1/β
.

We can then deduce a confidence interval for supk |Cj,k|. Let ε ∈ (0, 1) be small.

First, let j(ε) such that e−C3(c′)j(ε)δ = ε/2. From Case 1, we know that for any j ≥ j(ε),

P
(
sup
k

|Cj,k| ≥ x
)
≥ 1− e−C3(c′)jδ = 1− ε

2
,

where x is such that (2αjx/D)β = ηj log(2) + θ1 log(j).

Second, let j2(ε) such that exp
(
−Cη,3(c

′′)j2(ε)
−δ/(1−Cη,4(c

′′)2−j2(ε)j2(ε)
−δ)

)
= 1− ε/2. From Case

2, we know that for any j ≥ j2(ε),

P
(
sup
k

|Cj,k| ≤ x
)
≥ e−Cη,3(c′′)

[
1+Cη,4(c)jδ/(2(1−Cη,4(c)jδ)

]
= 1− ε

2
,

where x is such that (2αjx)β = ηj log(2)+ θ log2(j). Then for any j ≥ max(j1(ε), j2(ε)), we have with

probability at least 1− ε,

sup
k

|Cj,k| ∈
[
2−αjD(ηj log(2) + θ1 log(j)) , 2

−αjD(ηj log(2) + θ2 log2(j))
]
.

Hence the result.
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C.2 Proof of Lemma 4.2 (case β = 1)

Proceeding as in the proof of Proposition 4.1, we have, for any for any x ∈ R∗+,

P(sup
k

|Cj,k| ≥ x) = 1−
[
1−P(|Xj,k| ≥ 2αjx/D)

]Nj

and P(sup
k

|Cj,k| ≤ x) =
[
1−P(|Xj,k| ≥ 2αjx/D)

]Nj

where Nj = C12
ηj . Note that for any t > 0,

P(|Xj,k| ≥ t) =
e−t

2

Then, we get

P(sup
k

|Cj,k| ≥ x) = 1−
[
1− exp(−2αjx/D)

]Nj

=: 1−Aj(x) and P(sup
k

|Cj,k| ≤ x) = Aj(x).

Using (65), we get

−H(x)
[
1 +

H(x)

2(1−H(x))

]
≤ log(Aj(x)) ≤ −H(x)

with

H(x) := C12
ηje−2

αjx/D = C12
ηj2−ηj+θ log2(j) = C1j

−θ.

Then, we have

P(sup
k

|Cj,k| ≥ x) ≥ 1− e−C1j
−θ11 and P(sup

k
|Cj,k| ≤ x) ≥ e−C1j

−θ12

[
1−C1j

−θ12/(2(1−C1j
−θ12 ))

]
,

where we choose θ11 = −1 and θ12 = 1. Consider j1(ε), j2(ε) such that

1− e−C1j1(ε) = 1− ε/2 and e−C1j2(ε)−1
[
1−C1j2(ε)−1/(2(1−C1j2(ε)−1))

]
= 1− ε/2.

Hence the result.
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[27] Céline Esser, Thelma Lambert, and Vedel Béatrice. The p-spectrum of random wavelet series.

arXiv preprint arXiv:2510.00622, 2025.

[28] David J Field. What is the goal of sensory coding? Neural computation, 6(4):559–601, 1994.

[29] P. Flandrin. Wavelet analysis and synthesis of fractional Brownian motions. IEEE Trans. Info.

Theory, 38:910–917, 1992.
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[82] Herwig Wendt, Sébastien Combrexelle, Yoann Altmann, Jean-Yves Tourneret, Stephen McLaugh-

lin, and Patrice Abry. Multifractal analysis of multivariate images using gamma markov random

field priors. SIAM Journal on Imaging Sciences, 11(2):1294–1316, 2018.

[83] Herwig Wendt, Nicolas Dobigeon, Jean-Yves Tourneret, and Patrice Abry. Bayesian estimation

for the multifractality parameter. In 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 6556–6560. IEEE, 2013.

44


	Introduction
	Random wavelet series and semi-dependent random wavelet series 
	 The model
	 RWS and SDRWS
	A key example: random wavelet mixtures (RWM) and their generalization
	Discussion on the model and related works

	 Uniform regularity of RWS and SDRWS
	Most irregular points of RWS and SDRWS

	 Multifractal analysis
	 Multifractal analysis of RWS
	 Multifractal analysis of SDRWS
	 Generalized Gaussian mixture models
	 Almost everywhere modulus of continuity of GMM

	Estimation of the uniform Hölder exponent
	Estimation procedure
	Numerical experiments

	Concluding remarks
	Mills ratio
	Extreme quantile estimation
	Definition and confidence interval

	Proofs
	Proof of Lemma 4.2 (case >1)
	Proof of Lemma 4.2 (case =1)


