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Abstract

Random wavelet series (RWS) provide a flexible framework for modeling multiscale stochastic
processes, but the classical assumption of full independence between wavelet coefficients is often
unrealistic, especially across scales. We introduce semi-dependent random wavelet series (SDRWS),
which preserve independence within each scale while allowing interscale dependencies at fixed spa-
tial locations. Adopting a sample-path perspective, we investigate how this relaxed dependency
structure affects pointwise and global regularity properties. We analyze the resulting multifractal
behavior and show how it differs from that of fully independent models. Finally, we study the
uniform Holder regularity exponent H™™, providing theoretical results and statistical estimation

procedures that are relevant for multifractal analysis and model validation.
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1 Introduction

At the end of the 1980s, when orthonormal wavelet bases were introduced, the question of identifying
pertinent wavelet models for data became a major issue. In signal and image processing, this issue
was rapidly addressed through denoising algorithms that explicitly account for the clustering of large
wavelet coefficients, such as hidden Markov tree models and neighborhood-based shrinkage rules, see
e.g. [21, 68, 70, 66]. A first step was the estimation of the distributions of wavelet coefficients for
a variety of signals and images; these computations led to a first important conclusion: these distri-
butions often match a simple parametric mixture model whose components are a Dirac mass at the
origin mixed with a generalized Gaussian distribution, see [77]. The knowledge of the distributions
of wavelet coefficients at available scales has been used in different contexts; see e.g. [67], where a
denoising method is based on the assumption that wavelet coefficients follow a generalized Gaussian
distribution. A recent application is supplied by wavelet quantile normalization (WQN) in statistics, a
denoising algorithm based on the idea of mapping, at each scale, the distribution of wavelet coefficients
of the corrupted signal onto a theoretical distribution previously computed on data available without
noise, see [24, 25]. Beyond denoising, empirical and theoretical distributions of wavelet coefficients
have also been used for Bayesian estimation and MAP shrinkage rules, texture analysis and synthe-

sis, as well as hypothesis testing and model selection in the presence of scaling laws, see e.g. [73, 33, 4].

However, a major difficulty in the construction of realistic wavelet models lies in the determination
of the dependencies between wavelet coefficients, see [16] for the determination of the dependency
between pairs of nearby wavelet coefficients in images. This issue has become even more relevant with
the recent proliferation of models supplied by ITA algorithms, whose mathematical properties are not
well understood; determining whether they display realistic dependency structures has thus become a
major concern, see e.g. [60]. This problem cannot be addressed in full generality; nonetheless, various
models based on wavelet coefficients have been proposed, which make specific assumptions on the
dependencies between coefficients.

Cascade-type models lie at one end of the spectrum. They originate in turbulence, where the cascade
assumption is justified by a heuristic argument proposed by Richardson to explain energy dissipation at
small scales, see [30] and references therein, as well as [56] for the related model of fractional Brownian
motion in multifractal time. These models were subsequently tailored to the wavelet framework, see [8,
79, 26], and they imply strong correlations between the magnitudes of neighbouring wavelet coefficients.
A related model is provided by multifractal random walks (MRW), which are used in mathematical
finance and present the advantage of having Gaussian marginals [10, 11]. At the other end of the
spectrum are random wavelet series (RWS), which provide models where the statistics of wavelet
coeflicients can be freely prescribed at each scale, and the coefficients are then all drawn independently
according to these distributions, both across scales and spatial positions. Intermediate models include
Gaussian scale mixture models and compound Poisson or Lévy-based wavelet constructions, which

allow for sparse representations and intermittency effects while retaining partial statistical structure,



see e.g. [78, 13, 38].

One way to assess the relevance of such models is through the estimation of nonparametric char-
acteristics such as those supplied by multifractal analysis. State-of-the-art techniques in this area
are based on wavelet expansions, and one of their byproducts has been to highlight the crucial role
played by wavelet leaders (defined as local suprema of wavelet coefficients) in the estimation of the
multifractal spectrum of data [40, 3]. A key property of these quantities is that they make it pos-
sible to account for the clustering of large wavelet coefficients without assuming any a priori model.
Indeed, permuting the locations of the wavelet coefficients at a given scale does not modify their dis-
tribution but can completely alter the distribution of wavelet leaders [41]. Therefore, wavelet leaders
encapsulate information on the spatial correlations between large coefficients, and comparing their
distributions with those of the coefficients themselves offers a way to validate models exhibiting vari-
ous types of dependency structures. In particular, a general conclusion drawn from the determination
of the Legendre multifractal spectrum of many mathematical models is the following: models with no
dependency between coefficients yield spectra that increase until they reach their maximum and then
fall abruptly to —oo, whereas the spectra of cascade-type models exhibit a decreasing branch after
the location of their maximum. Related extreme multifractal behaviors are also exhibited by lacunary
series supported on Cantor-type sets, which provide classical benchmark constructions with strong
sparsity and highly erratic pointwise regularity, see e.g. [37]. These observations raise the question:
How is the multifractal analysis of random wavelet series affected when the (very strong) assumption
of full independence of wavelet coefficients is relazed?

Another motivation for investigating this question is that this independence assumption is unrealistic
in applications, as demonstrated by the aforementioned studies on correlations between pairs of wavelet
coeflicients. Nonetheless, this assumption is often found reasonable for wavelet coefficients at a given
scale, since, in contrast with pointwise values, correlations decay rapidly with the distance between
the supports of the corresponding wavelets, see e.g. [29], but it is much less realistic for interscale
correlations. Indeed, signals exhibiting local singularities typically display large wavelet coefficients
at multiple scales and at the same spatial location. This motivates the study of models in which the
independence assumption across scales is dropped, while independence at a given scale is preserved.

Beyond these modeling issues, the present work adopts a sample-path point of view, which is natural
in signal and image processing applications, where observed data are interpreted as realizations of
stochastic processes. From this perspective, one is interested in describing both the global and point-
wise Holder regularity properties of typical sample paths, as is customary in the multifractal analysis
of stochastic processes [40, 3]. The pointwise regularity of a generic realization may exhibit strong
spatial fluctuations, a phenomenon that plays a central role in multifractal analysis. In the case of
random wavelet series with sufficiently heterogeneous coefficient magnitudes, this leads to a highly
erratic behavior: although the Holder exponent at any fixed point almost surely takes a constant
value, the collection of pointwise exponents attained along a single sample path typically fills a whole
interval, see [9]. Such erratic behaviors are not specific to wavelet-based models and also arise, for

instance, in Lévy processes [38].



In this article, we extend the classical random wavelet series framework introduced in [9] by allowing
dependencies between wavelet coefficients across scales, while preserving independence at each fixed
scale. This more general model, referred to as semi-dependent random wavelet series (SDRWS), is
motivated by applications involving stochastic processes with isolated singularities, which naturally
exhibit strong correlations between wavelet coefficients at different scales but at the same spatial
location. We investigate how this relaxed dependency structure impacts both pointwise and global
regularity properties.

A second main objective of this work is the estimation of the parameter H?in, which characterizes
the uniform Hoélder regularity of the process X and provides a global bound on the smoothness of
its sample paths. Although often overlooked, this parameter plays a fundamental role in multifractal
analysis. Its wavelet characterization, rooted in the classical theory of function spaces [57], underlies
several estimation procedures based on the decay of wavelet coefficients [74, 76, 29, 2], and explains its
importance in applications requiring global regularity control. In particular, H?m has been used for
model selection in stochastic modeling and texture analysis [80], as well as for hypothesis testing in the
presence of scaling laws or long-range dependence [4]. The present contribution complements recent
developments on the estimation of multifractal parameters, such as log-cumulants [62], by providing a
detailed analysis of the uniform regularity exponent in both independent and semi-dependent random
wavelet series models, relying in particular on wavelet leaders [51, 81].

In line with these objectives, our main contributions are as follows:

e We refine the uniform modulus of continuity result established by [42] in the RWS framework
(Proposition 2.3), and extend it to settings with dependent coefficients, both in the general
SDRWS model (Proposition 2.4) and in the specific case of generalized Gaussian mixture laws
(Corollary 2.5). We further investigate the pointwise modulus of continuity in both RWS and
SDRWS settings (Proposition 2.8).

e We determine the multifractal spectrum of SDRWS (Corollary ??) as a consequence of a block
ubiquity theorem (Theorem 3.2). This general result is then specified for generalized Gaussian
mixture models (Proposition 3.4), for which we also compute the almost-everywhere modulus of

continuity (Proposition 3.5).

e We propose a statistical procedure for estimating the uniform regularity exponent H™", together

with an explicit confidence interval (Theorem 4.3), and validate its performance empirically.

The paper is organized as follows. Section 2.1 recalls the construction of RWS, specifies the model un-
der study, and introduces the SDRWS framework. Section 2.2 establishes the sharp uniform modulus
of continuity, and Section 2.3 links it to the maximal pointwise irregularity. The multifractal analysis
is revisited in Section 3.1 and extended to the SDRWS setting in Section 3.2, yielding a simple multi-
fractality criterion. Section 3.3 and Section 3.4 address the case of generalized Gaussian mixtures and
their almost-everywhere modulus of continuity. Finally, Section 4 presents the estimation procedure

for H™" and its confidence interval.



2 Random wavelet series and semi-dependent random wavelet series

2.1 The model

Random wavelet series (RWS) were introduced in [9] in the one-variable periodic setting, where their
pointwise regularity properties were studied and their multifractal spectrum was determined. Its
relevance in statistical modelling has been investigated, see [31, 32, 53, 69], and it has been used in
various settings, incuding turbulence [49]. Recently, the multifractal analysis based on the Hélder
exponent performed in [9] has been extended to the p-exponent in [27], and sharp results concerning
the global Besov regularity of RWS were recently established in [34]. In this work, we consider the
more general case of random fields, that is, non-periodic processes defined on R%; this setting is more
relevant for applications in image modeling and processing [6, 55]. The reader can easily check that
these modifications have no consequence for the results from [9] that we will use. Conversely, in some
papers (see [7, 45, 50]) dealing with nonparametric estimation in a regression setting via a discrete
wavelet transform, periodized wavelet bases are considered; one can easily check that the results we

obtain can be readily adapted to that setting.

2.1.1 RWS and SDRWS

Random wavelet series are formally defined as follows: A smooth orthonormal wavelet basis of L?(R%)

is of the form
o(x —k) and 29290 (2 — k), zeR? j>0, kezdic2¢-1],

where [n] := {1,...,n}, ¢ and the ¢(9) are smooth functions with fast decay (the required smoothness
for a given result can easily be tracked if needed). We will use the notations

or(x) =p(zx—k) and wj(l,)c(x) =027z — k).
Definition 2.1. A semi-dependent random wavelet series (SDRWS) X = (X;),cpra associated with a
given orthonormal wavelet basis is a stochastic process such that, for each j, the wavelet coefficients
CJ(I,Z of the random variable

Xo=Y Gea@+ > i@ (1)

kezd i€[24—1], j>0, keZd

are independent and share a common law ji;.
i)

The stochastic process X is a random wavelet series (RWS) if, additionally, the ! . are all independent

random variables. g
Remark 1. Since we are interested in regularity properties of sample paths, we make no assumption
on the Cj which yield a smooth contribution to (1), and we do not mention this component in the
following.

As regards the assumptions on the C](',ill’ the RWS model is completely specified whereas the SDRWS
model is not: A key advantage of this model is that no assumptions are made on the dependencies

between wavelet coeflicients located at different scales.



2.1.2 A key example: random wavelet mixtures (RWM) and their generalization

In both independent and semi-dependent settings, we will focus on the particular case where, for each
j >0and i€ [2¢ - 1], the law of C](Z,z, is a mixture process defined as follows. Let Y be a real random
variable whose law p has a density G with respect to the Lebesgue measure on R. We make the
following wavelet density assumptions on a triple (G, (p;);>0, (Cj);>0), which involve the density G as
well as the non-negative sequences (p;);>o and (C});>0 characterizing the sparsity and regularity of
the model:

Assumption 1. 1. G is continuous in a neighbourhood of 0.
2. G(0) > 0.
3. The mapping A — P(]Y| > A) has fast decay.
4. (pj)j>0 is a nonnegative sequence such that

lim p; =0 and limsup 2jpj = 4o00. (2)

J—=too j—400
5. (Cj)j>0 is a nonnegative sequence such that
3C,e>0,Yj >0, C;<C279. (3)

Definition 2.2. Let (G, (p;)j>0,(Cj);>0) be a triple satisfying Assumption 1. A semi-dependent
random wavelet mixture (SDRWM) of parameters (G, (p;);>o, (Cj(zlz)jzakezdﬂ'e[d]) is a SDRWS such
that the law of its wavelet coefficients C’ﬂ satisfy

(i) Sparsity: Y¥j >0, Vi € [d), Yk € Z, P(C\') = 0) = 1 p;;
(i) Amplitude distribution (conditional): Conditionally on C\') # 0, C\') £
of Y has density G.

C;Y where the law

A random wavelet mizture (RWM) corresponds to the particular case where the SDRWM actually is
a RWS (i.e. all wavelet coefficients of the process are independent). The law of Cj(l; and the law of
C;Y will be denoted by v; and pj, respectively.

Remark 2. In practice, the constant C; may depend on the wavelet index (). Indeed, in the two-

dimensional case, the three wavelets used are tensor products of the univariate functions ¢ and :

W (z,y) = v(@)e(y), P (2,y) = e(@)(y), and PP (z,y) = ¥()v(y).

Therefore the two first ones display cancellation in one direction only (respectively the first and the
second variable) whereas the third one displays cancellation in both variables. It follows that, in the
case of anisotropic textures, the statistics of the coefficients on the first and second wavelets may
differ; and, in all cases, statistics that are more peaked at the origin are observed for the third wavelet
because of the extra cancellation; see [55]. For notational simplicity, we do not make this possible

dependence explicit; adapting our results to account for it is straightforward.



Although these processes are defined on R?, we restrict our analysis to the cube K = [0, 1]¢, which
entails no loss of generality with respect to local regularity properties. We work with a compactly
supported wavelet basis, which ensures that for sufficiently large j, the wavelets affecting the process

on K have indices satisfying k - 277 € [0,1)¢. Accordingly, we will focus on the corresponding
N; = (24 —1)2% (4)

wavelet coefficients in what follows.

2.1.3 Discussion on the model and related works

Connection with lacunary wavelet series The parameters p; quantify the sparsity of the series

since

p;=El{k: O} # 0y
The first condition in (2) means that most wavelet coefficients of X; vanish, and the second one
implies that the series is not too sparse, i.e. that the number of nonvanishing wavelet coefficients
tends to 400 as j tends to +o0o. This model is consistent with certain Bayesian wavelet techniques for
nonparametric regression (see for instance [77] and the references therein) where the prior on the law

v; takes the form

pitj + (1= pj)do,
where g is a Dirac mass at 0. The hyperparameters p; and the ones involved in the definition of u;,
need to be appropriately specified. A choice which leads to multifractal sample paths is

p; =207D7  for 5 e (0,d). (5)

A model where this assumption was made is supplied by lacunary wavelet series, see [39]; the par-
ticular case investigated corresponded to the following choice: there are ~ 2 non-vanishing wavelet

coefficients drawn at random in [0, 1]¢ of size 27% (where a > 0).

Link with uniform regularity We will see that the sequence (C});>o (essentially) quantifies the

uniform regularity of the sample paths of the process X. A typical choice is C; = 277 for a v > 0.
Assumption (3), together with the fast decay assumption on P(]Y| > A), imply that the process X
is well defined and has some uniform regularity: for any ¢’ < ¢, a.s. the sample paths of X locally

belong to the Holder space C’ﬁ:c see [9]; this result will be sharpened in Proposition 2.3 below.

Density function Considerable attention has been devoted to analyzing the marginals of wavelet

coefficients of images. They typically exhibit heavy-tailed distributions: most are small, while a few
take large values, especially when o < 2, resulting in marginal distributions with heavier tails than the
Gaussian [28, 54, 73]. Therefore, we focus on the case where the probability density G is a generalized
Gaussian distribution, denoted by GG(0, 1, «), such that

Go(z) = —e 1717 (6)



where I" denotes the gamma function, the normalizing constant being such that [ G(z)dx = 1; indeed,
the corresponding statistics of wavelet coefficients are commonly met in signal and image processing.
This non-Gaussianity has motivated various Bayesian models, including mixtures of Gaussians [1, 19]
and broader classes of Gaussian scale mixtures for image denoising [65, 71, 72, 75].

Wavelet decompositions are especially suited for natural images, which often consist of smooth regions
interrupted by edges, so-called “cartoon-type” structures [23, 55]. Smooth areas yield near-zero coef-
ficients, while edges generate sparse, high-amplitude ones. This structure explains the sharp central
peaks, heavy tails, and inter-scale correlations observed in wavelet coefficient histograms [73, 65].
Although non-Gaussian image statistics have long been observed, more recent models capture these
effects via linear predictors with structured uncertainty [16], sparse coding [63], or hidden Markov
models [21]. Deep learning approaches have further improved modeling of inter-scale dependencies, as
in [46], where a CNN-based method leverages a stationary local Markov model across scales.

These developments motivate going beyond the RWS model by relaxing the assumption of inter-scale
independence, which is often unrealistic. In this work, however, we focus on analyzing the simplest
consistent models - those with independence at fixed scale (RWS) or across scales (SDWS) - as a

baseline for further investigation.

2.2  Uniform regularity of RWS and SDRWS

A first basic information concerning the uniform regularity of a function defined on R? or of the sample

paths of a stochastic process is supplied by its uniform Hélder exponent:
H}nin =sup{a: f€ C’fgc(Rd)}. (7)

For instance, in the case of fractional Brownian motion, the uniform Hélder exponent coincides with
the Hurst exponent. However, this notion does not yield sharp estimates for the modulus of continuity.
In particular, for Brownian motion, knowing that Hglin = 1/2 does not provide any information on
the logarithmic corrections appearing in its uniform modulus of continuity. As mentioned in the
introduction, the latter is given by h +— /2|h|log(log(1/h)) (see [52]).

The uniform Hoélder exponent of RWS has been determined in [9]; see also (27) below. One of our

aims here is to refine this result and obtain sharp estimates for the uniform regularity of RWS and

SDRWS. To this end, we will rely on the following general framework (see Sec. 1.1 of [42]).

Definition 2.3. A modulus of continuity is a positive non-decreasing function 0 : RT™ — R satisfying
(0) =0
Vh >0, 6(2h) < CH(h).
Additionally, 0 is an admissible modulus of continuity if it satisfies

Y 2Nig(2l) < c2Ng(2)
j=J

4C > 0:

dN e N, 4C' > 0, VJ >0,

Z 2(N+1)j9(2—j) < 02(N+1)J9(2—J)‘
J<J



the corresponding N is referred to as the order of the modulus.

The relevance of admissible moduli of continuity lies in the fact that they can be characterized exactly
through conditions on the absolute values of wavelet coefficients. The most commonly encountered

moduli are of the form, for A small enough,
O(h) = he| log(h)\ﬁ(log(] log(h)]))? fora>0, B,v€R,

which are admissible if and only if & ¢ N (in which case [«] denotes the order of the modulus).
We recall below the definition of the uniform modulus of continuity of a function, which serves to

characterize its uniform regularity; see [42].

Definition 2.4. Let f : R* — R be a locally bounded function, and let 6 be an admissible modulus of

continuity of order N € N; 0 is a uniform modulus of continuity for f if:

1. f e CN(RY),
2. For every multi-index i = (i1,...,iq) with |i| = N, the partial derivatives ) satisfy
‘ . oIl —
90 >0, Vi€ [d], Yo,y € R such that © £y, |fO(x) — FO@) < c2Uz=8D g

eyl

The function 0 is a sharp mudulus of continuity if, in addition, no function w which is a o() is a

modulus of continuity.

Remark 3. If H}“in > 0, then it can be rewritten
H}“in = sup{a: h— h® locally is a uniform modulus of continuity of f}.

In the present study, moduli of continuity are defined up to a multiplicative constant that we will not

track.

The following characterization is proved in [42].

Proposition 2.1. (Prop. 1.2 of [{2]) Let f : R? — R be a locally bounded function, and let
(Ck,C](.jlz_)j,k,i be its coefficients in a smooth wavelet basis (SOk,%(Z;l)]kz If 0 is a uniform modulus

of continuity for f, then the wavelet coefficients of f satisfy
3C >0, VkeZ, C| < C. (9)

and
3C >0, V(G.ki)eNxZix[d, |CV)] <coE). (10)

Conversely, assume that the wavelet coefficients of f satisfy (9) and (10); then:

1. If 6 is a admissible modulus, then (8) holds and 6 is a uniform modulus of continuity for f;

10



2. Otherwise, (8) is replaced by

30> 0. %) € B 1190 - (O] < s oglle ). ()

and these results are optimal.

It follows that the uniform modulus of continuity of a function f is determined by the size of its
largest wavelet coefficient at each scale. In the general framework of RWS, and without additional
assumptions on the distribution of the wavelet coefficients, the uniform Holder exponent H}nin was
established in [9]. We now refine this result by deriving a sharp uniform modulus of continuity.

To state the result, we introduce the functions f; defined for j > 0 and a > 0 by
¥j>0,Ya>0,  fi(a) =P(CY| > a), (12)
that is, 1 — f; is the cumulative distribution function of the random variable ]C’](Z,z|

Lemma 2.2. Let X be a RWS defined on RY. Let (f;);>0 be a sequence of functions satisfying (12)

and assume that (a;);>0 is a positive decreasing sequence such that
filaj) = o(2~%). (13)
o If Zj 2djfj(aj) < 00, then a.s., for j large enough, sup |C’](Z,Z| <aj;
k b

o If Zj 2djfj (aj) = 400, then a.s., for j large enough, there exists an infinite number of values of

J such that sup |CJ(Z,Z] > aj;.
. :

Proof. Since the C - 2% coefficients CJ(Z; for k-277 € [0,1) are independent random variables, it follows

that the probability that one of them is larger than a; is
.odj - .
Pj=1- (1~ fi(a;)°*" = C-2Y fj(a;) + O ((Qd”fj(aj))2> ’

Thus, ) ; Py is finite if and only if ) i 24 fj(a;) < oo. Using the independence of the wavelet coeffi-

cients, one can apply the Borel-Cantelli lemma, and Lemma 2.2 follows. O

The following result is a consequence of Proposition 2.1 and Lemma 2.2.

Proposition 2.3. Let X be a RWS on R Let (f;);>0 and (a;j)j>o0 be sequences satisfying (12) and
(13). Define the function g : RT — RT by

{ 9(277) = a; _ (14)

g is constant on [277,2-277)

o If Zj 2% fi(aj) < oo and g is an admissible modulus of continuity, then a.s. the function

h— g(h) is a uniform modulus of continuity for X.

o If Zj 2djfj(aj) < o0 and g is not an admissible modulus of continuity, then a.s. the function

h— g(h)(1+ |logh|) is a uniform modulus of continuity for X.

11



o If>; 2% f;(aj) = +oo, then any function § such that g(h) = o(g(h)) as h — 0 is almost surely

not a uniform modulus of continuity for X.

Proof. In the first case, Lemma 2.2 shows that the condition }, 2% f;(a;) < co implies that, almost
surely, for all sufficiently large j, supy, |C](Z,3,| < a;. Using the definition (14), this can be rewritten as

sup CY)] < g(27).

This allows us to apply the second part of Proposition 2.1. If the modulus g is admissible, then Point
1) of Proposition 2.1 gives the first statement of Proposition 2.3. Otherwise, Point 2) yields the second
statement. As for the third statement of Proposition 2.3, it follows by a similar argument, this time

relying on the first part of Proposition 2.1 together with the second statement of Lemma 2.2. O

We now consider the setting of SDRWS, i.e. we drop the assumption that wavelet coeffi-
cients located at different scales are independent. Consider a sequence (f;);>0 satisfying (12).

Fix a constant C' > 0, and define the sequence (b;);>0 by
filbj) = €279, (15)
as well as the function g : R™ — R* by
G(277) =b;, and extend it as a constant on [277,2.277). (16)
The following result follows from Proposition 2.1 and Lemma 2.2.

Proposition 2.4. Let X be a SDRWS defined on R%. Let (f;);>0 and (a;);>0 be sequences satisfying
(12) and (13) and let g and g be defined respectively by (14) and (16).

o If Zj defj(aj) < oo and g is an admissible modulus of continuity, then a.s. the function

h+— g(h) is a uniform modulus of continuity for X.

o If Z]‘ 2djfj(aj) < o0 and g is not an admissible modulus of continuity, then a.s. the function

h— g(h)(1+|log(h)|) is a uniform modulus of continuity for X.

o If>;2Yfi(a;) = +oo, then any function g : RY — R such that g(h) = o(g(h)) as h — 0 is

almost surely not a uniform modulus of continuity for X.

Proof. We first observe that the first two statements of Proposition 2.3 remain valid, as they rely only
on the direct part of the Borel-Cantelli lemma and therefore do not require independence.

We now turn to establishing irregularity results in this more general setting. As before, the key point
is to identify, as j — 00, a sequence of “large” wavelet coefficients. For each fixed scale j, let ); denote
the probability that all C - 2% wavelet coefficients at scale j are bounded by bj. By independence, we

have
log(Q;) = C"- 2% 1og(1 — f;(b;)) = —C"j(1 + o(1)),

12



—C"j(1+e(1)) - Applying the direct part of the Borel-Cantelli

for some constant C” > 0. Hence, Q; = e
lemma, we conclude that almost surely, for all sufficiently large j, at least one coefficient c; ; ; exceeds
bj. Since g is defined by g(277) = b; and extended as a constant on the interval [277,2 - 277), with

(bj)j>0 given by (15), the claim follows from the same argument as before. O]

Remark 4. The slight loss between the converse parts of Propositions 2.3 and 2.4 stems from the fact
that we cannot apply the Borel-Cantelli lemma simultaneously to all wavelet coefficients; instead, a
scale-by-scale argument is required. Corollary 2.5 below illustrates this phenomenon by comparing
the corresponding moduli of continuity in the case where the distributions of the wavelet coefficients

are generalized Gaussian mixtures.

Let us now examine how these conditions specialize in the case of the mixture models introduced in
Definition 2.2.

Corollary 2.5. Let X be a RWM with parameters C; = 27 and Dj = 2e=1i for some ¢ > 0. If

v ¢ N, then a sharp uniform modulus of continuity of X almost surely is

h— g(h) = kY| log h|/°. (17)
If v € N, then

h— g(h) = kY| log h|'+1/@ (18)

is a uniform modulus of continuity for X, and any function that is o(h”|log h|*/) is not a uniform
modulus of continuity for X.

Now let X be a SDRWM with the same assumptions on C; and pj. Then the function in (18) is a
uniform modulus of continuity for X, and the function h — h7|log h](l/a)_l is not a uniform modulus

of continuity for X.

Proof. Since, for a large,

0o e e~ a
Fy(a) := /a e " dr = W(l +o0(1)), (19)
it follows that (0:/C3)
P(|CY| > a; = fi(a CPL]_-}-O
(| Jk‘ ]) ]( ]) ](aj/cj)a 1( ( ))

and the uniform regularity of X will be given according to the convergence or divergence of the series

(aj/Cj)"

ZQd pj a]/c a 1° (20)

Since C; = 277 with v > 0, Theorem 1 of [9] yields that the uniform Hélder exponent HB™ of
the corresponding RWS is v so that we expect a slight correction of a uniform modulus of the form
h + O(h) = kY. For this reason, we take a; under the form a; = a277;% The general term of the

series (20) boils down to

e_aajba

4 .
2 Pj aoe—ljb(oc—l) ’
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We assume that p; > 2(6~17 for an ¢ > 0 (which covers the specific case we considered in (5)). Then
we pick b = 1/a: For a large enough, the series is convergent, whereas for a small it is divergent.
These choices yield moduli of continuity of the form h +— g(h) = ChY|logh|'/®. Hence Corollary 2.5
follows from Corollaries 2.3 and 2.4 applied to these specific settings. ]

We can contrast these results with those obtained in the case of Gaussian processes that can be
expanded into wavelet series with pure (in contrast to miztures) Gaussian statistics such as fractional
Brownian motion (fBm).

Indeed, the fBm with Hurst index H € (0,1) can be expanded (see [58]) as

Bff =" 27 by jp(20t — k) + Re =: ZF' + Ry,
jEN keZ
where R is a smooth process and (§;x, 7 € N,k € Z) is a sequence of i.i.d. standard normal variables,
and the ¥pq/7 is a biorthogonal wavelet basis. The uniform modulus of continuity of the RWS Z;
is h > |h|"|log h|'/2. We retrieve the uniform modulus of continuity of the fBm as the specific case
pj = 1 (no mixture), with Cj 5, = & i, Cj = 277 =27Hi and o = 2.

2.3 Most irregular points of RWS and SDRWS

The technique which led to the determination of the uniform regularity of RWS and SDRWS also
yields their pointwise irregularity in a sharp way at the most irregular points. In order to state such

results, we first recall the notion of pointwise modulus of continuity.

Definition 2.5. Let f : RY — R be a locally bounded function, and let 6 be a modulus of continuity
of order N. We say that 0 is a modulus of continuity of f at o if there exists a polynomial Py, of
degree at most N and constants C > 0 and 6 > 0 such that, for all x with |x — xo| < 9,

[f(z) = Pz — x0)| < CO(|lz — o])- (21)

The function 0 is a sharp mudulus of continuity at z¢ if, in addition, no function w which is a o(0) is

a modulus of continuity at xg.

We will use the following notation. To index wavelets and their coeflicients, we will interchangeably

use dyadic cubes

ki k1+1
277 29

P kg kqg+1
7.k — gv 27 ai

] where k =k, -+ , kg (22)

and we will write C’;\i) or Cj(l,l without distinction. For a dyadic cube A, let 3\ denote the cube with
the same center and three times the side length.
If f:R% — R is locally bounded, the wavelet leaders of f are defined by

ly = sup |C(Z;)|.
N C3A
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For z € R%, denote by Aj(x) the unique dyadic cube of side length 277 containing x. A key fact is
that the pointwise modulus of continuity can be recovered from the wavelet leaders, as stated in the

following result; see [40, 42].

Theorem 2.6. Let f € CfOC(Rd) for ane >0 and let 1/1](211 be a smooth wavelet basis. If 0 is a modulus
of continuity of f at xg, then the wavelet leaders of f satisfy

3C >0, Vj,k, Ur;(w0) < CO(277). (23)
Conversely, assume that the wavelet coefficients of f satisfy (23); then
hi—= 0(h)(1 + [log(h)])
18 a modulus of continuity of f at xg.

As a consequence of Lemma 2.2, let us prove the following result.

Proposition 2.7. Let X be a RWS. If its uniform modulus of continuity is admissible, then there
erists a dense set of points where the pointwise modulus of continuity of X is equal to its uniform

modulus of continuity.

Remark 5. Before proving this result, let us motivate its statement; indeed, a common belief is that
the uniform modulus of continuity coincides with the largest pointwise modulus of continuity met in
the data, in which case this result would not be relevant. However, it is not the case, as shown by

chirps of the form x — |2|®sin(1/|z|%) for o, B > 0, see [42] for a detailed analysis this question.

Proof of Proposition 2.7. Let A be an arbitrary dyadic cube contained in [0,1)%. The proof of the
second statement of Lemma 2.2 can be carried out inside ) instead of [0,1)%. In particular, it yields
a sub-cube X' C A such that |Cy/| > a;. Iterating this argument within A, we construct a sequence

(An)n>0 of dyadic cubes with generations (jy)n>0 such that
)\n-i—l C A and |C)\n| > aj, -

This nested sequence of cubes converges to a point xg, at which Theorem 2.6 implies that the modulus
of continuity of f cannot be o(f(h)). Since the pointwise modulus of continuity is always bounded
above by the uniform modulus of continuity, it follows that 6 is a sharp modulus of continuity at

xo € X\. As X\ was arbitrary, the set of such points is dense in [0, 1)d. ]

We now consider the case of SDRWS. The argument for the determination of the most irregular points
is the same as for RWS, except that the sequence (a;);>0 is replaced by the sequence (b;);>¢ defined
by (15). The following result follows.

Proposition 2.8. Let X be a SDRWS. If its uniform modulus of continuity is admissible, then there
exists a dense set of points where the function g defined in Corollary 2.4 is not a pointwise modulus

of continuity of X.
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3  Multifractal analysis

In this section we first recall the results of [9] concerning the multifractal analysis of RWS and then

we show how they extend to the more general setting of SDRWS.

We begin by recalling several notions from multifractal analysis. Let v > 0 and let f : R? — R be
a locally bounded function. The function f belongs to C?(xg) if h — h" is a pointwise modulus of
continuity for f at xg.

The Hélder exponent of f at xq is

hy(zo) =sup{y: f is C7(z0)}. (24)

The multifractal spectrum of f describes the size of the sets of points sharing the same Holder exponent,
the so-called isoholder sets
()= {a: hyla) = H), (25)
see [64]. It is defined by
Dy(H) = dim(Z;(H)),

where dim denotes the Hausdorff dimension (with the convention dim(()) = —o0).

The multifractal support of f is the set

MSy={H: Dj(H)>0t={H: ZI;(H)#0}.

3.1 Multifractal analysis of RWS

The a.s. multifractal spectrum of the sample paths of RWS has been determined in [9], and we now
recall these results; we keep the same notations as in this article, making the necessary adjustments
required by the d-variable setting; denote by p; the common probability measure of the 24 random

variables X := —logz(\C](i,iD/j. Thus p; satisfies

P(|Cf)] = 279) = pj((~o, al).

Note that it follows from (12) that p;((—o0,a]) = fj(Q_O‘j),
We note for a > 0 )
1 2 1. .
p(a,€) := limsup 082 ( pJ([O" g, o+ 5]))

and the wavelet large deviation spectrum of the corresponding RWS is

pla) = inf p(a ). (26)

As in [9], we suppose that p(«) takes a positive value for at least one value of «. Let

W:{a: Ve >0, Z2jpj([a75,a+s]):+oo}.
JjeN
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Let
pla)\
HY* = <sup ) .

a>0 &
The assumptions made on RWS imply that Hﬁ?in > 0, and the uniform Hélder exponent of a RWS is

positive and given by
HY™M = 01[1%% Ww. (27)

The following result yields the multifractal spectrum of almost every sample paths of a RWS.

Theorem 3.1. (Theorem 2 of [9]). Let X be a random wavelet series. With probability one, the
sample paths of X satisfy the following properties:

1. Their multifractal support is Sx = [HP™, HR];

2. Their multifractal spectrum is given by

VH € Sx, Dx(H)=H sup M; (28)

ac(0,H] @

3. For almost every zx,
hx(x) = HY™. (29)

Remark 6. e The first statement implies that the Holder exponent at the most irregular points is
H}?i“. Prop. 2.7, in conjunction with Theorem 2.6, sharpens this result by yielding the sharp
modulus of continuity at these points. In the case of generalized Gaussian mixture models, the
last statement will also be sharpened in Sec. 3.4 which will yield the almost everywhere sharp

modulus of continuity.

e The function

H+— sup HM
a€e(0,H) o

is increasing on (0, H¥**] and takes the value 1 for h = H$**, which is in accordance with (39).

3.2  Multifractal analysis of SDRWS

Multifractal properties of RWS were first obtained as a by-product of a general framework introduced
in [39], now referred to as ubiquity methods. Let K = [0,1]%, let S = (2,,)n>0 be a sequence of points
in K, and let L = (I,)n>0 be a sequence of positive numbers with I, — 0 as n — oco. The pair (5, L)
satisfies the ubiquity condition if almost every point of K belongs to the set

E = limsup B(xy, ). (30)

n

It satisfies the strong ubiquity condition if every point of K belongs to E. Ubiquity methods

provide lower bounds on the Hausdorff dimension of the sets

E, = limsup B(zy, (I,)"). (31)

n
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The first results of this type were obtained in [39, 9] when (z,),>0 is an i.i.d. sequence equidistributed
with respect to the Lebesgue measure on K. These results were used to derive the multifractal spectra
of lacunary wavelet series and subsequently of RWS. In these cases, each z, identifies the unique
dyadic cube A at generation j corresponding to the wavelet coefficient C).

In such random settings, the ubiquity condition follows directly from the Borel-Cantelli lemma, while
the strong ubiquity condition is ensured by almost-sure covering results for random sets; see [47] and
the references therein. Since then, the ubiquity framework has been considerably extended; see, for
example, [15, 14, 5] and ref. therein.

In the more general setting of SDRWS, however, the sequence (xy)n,>0 is no longer i.i.d., and the
independence assumption is replaced by the weaker notion of random block independence, where the

scale structure is emphasized.

Definition 3.1. A random block independent dyadic sequence in K is a sequence (Kj), each Kj being
constituted by dyadic cubes \j, C K, of generation j (i.e. of width 277), such that for each j, the
cubes A1 are independently drawn with the same probability p; among the 24 dyadic subcubes of K

of generation j.

Note that no assumption is made on possible correlations between the locations of the cubes A; ;. C K;
across different generations j.

The expectation of the number of elements of Kj is

E(Card(KJ)) = dep]’ = Nj. (32)

We impose the following exponential growth condition on the N;: There exists a subsequence (jy)
such that

Ja, S with 0 < o < B < d such that, for n large enough, 2% < N;, < 2fin. (33)
We can now state the following block ubiquity result.
Proposition 3.2. Let (\jx) be a random block independent dyadic sequence satisfying (33). Let

oo N\ 1Vd

where C > 4 is picked so that 1/l is a power of 2. Then, a.s. AN such that, for all ¥n > N, the
dyadic cubes of width 1, that include \j, . for k € K; form a covering of K.

L = (1;) be the sequence

In particular, the couple constituted by the centers of the cubes A;; and the radii 2dlj almost

surely satisfies the strong ubiquity condition.

Proof. Let j be one of the j,. We partition the cube K = [0, 1]¢ into dyadic subcubes of sidelength l;

as defined in (34). Let Cj, be one of these subcubes; it contains
m; = 2dj(lj)d (35)
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dyadic cubes of generation j; therefore, the probability that none of the (\;x) kek; 1s inside Cjp is
(1—p;)™.

Since there are (1;)~% cubes Cje, it follows that the probability that at least one of the subcubes

(¢ contains no element of Kj is bounded by
Py = (1) (1 —py)™.

We will show that ) P;, < oo which, by the Borel-Cantelli Lemma, will imply that, for n large
enough, all subcubes C, , will contain at least one element of Kj, .

We now estimate P;. We have
log(P;) = —dlog(lj) — m;p; + O(m;(p;)*).
Since the sequence [; decays exponentially, and using (32), (34), and (35), we obtain
log(P;) = log(N;) — log(Clog(N;)) — (1;)*N;(1 + o(1))
= (1= C)log(Nj) + o(log(N;)))-

Since C' > 4, it follows from the exponential growth assumption (33) that > P;, < oco. By the
direct part of the Borel-Cantelli lemma (which does not require independence), we conclude that,

with probability 1, for all sufficiently large n, each subcube C, , contains at least one cube \; ;. [

We will now apply this framework to the setting supplied by SDRWS. We first consider the value

of the uniform Holder exponent H}?in. In the case of RWS, it is determined as follows.

Let W=<a: Ve>0: ZZdjpj[a—s,a+5]=+oo , and H™™ = inf W. (36)
J

If X is a RWS, then a.s.
H;‘I{lin — H{nm

As regards the uniform Holder exponent of SDRWS, the value of H;?in depends on the following
quantity which, may differ from H"".

Let W:{a: Ve > 0,3n > 0, 3j, = +o00: 2dj”pjn[a—€,a+€]22’7j”}, and HY'"™ = inf W,

Clearly, H™™ < HI"" We will first check the following result, which replaces Proposition 4.8 and
Appendix A of [27] for RWS: If X is a SDRWS, then

a.s. HMM < HPN < gV (37)

Proof: The first inequality follows from the fact that the multifractal spectrum of a SDRWS is
bounded by (28) (this is actually true for any wavelet series, see [9]). The second inequality follows

for the fact that, by definition of HJ"", there exists collections of wavelet coefficients of exponential
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cardinality and of size ~ 272" " , and the result follows from the block ubiquity result.

The following result, which extends Theorem 3.1 to the setting of SDRWS, is a consequence of the

previous random block ubiquity property.

Theorem 3.3. Let X be a SDRWS. With probability one, the sample paths of X satisfy the following

properties:
1. Their multifractal support is Sx = [HP™, HP];

2. Their multifractal spectrum is given by

VH € Sx, Dx(H)=H sup M; (38)

ac(0,H]
3. For almost every x,
hx(z) = HY™. (39)

Remark: Note that this result leaves open the precise value of H}?in; the only information we
have is that it takes value in the interval [H™" H3""]. In other words, the multifractal spectrum of
a SDRWS may differ from the corresponding RWS (with the same distributions of wavelet coefficients
at each scale) only on the interval [HJ"", HH%] where it takes the value 0 for RWS and it takes the
value —oo for SDRWS. For H > H}?in, the spectra of both processes coincide.

We now sketch how the proof of Theorem 3.1 has to be modified in order to apply to SDRWS. We
first note that, in [9], the upper bounds for the multifractal spectra in (38) are obtained in terms of
large deviation spectra derived form the scale by scale distributions, and therefore are derived without
specific dependence assumptions, and thus remain valid for SDRWS.

In order to obtain the lower bounds, we will show how block ubiquity techniques apply to the
setting of SDRWS. We won’t detail the full proof, but rather point to the locations where the scale by
scale independence is used in the RWS case, and show how to replace the corresponding arguments
using block ubiquity. We will actually refer to the more recent proof of [27] which fully uses the
more general versions of ubiquity techniques, and also uses the notion of wavelet p-leaders, which were
introduced in the meantime, and therefore it will allow for a simpler and more pedagogical derivation;
note that in [27], RWS are processes indexed by R, but the reader will easily check that the results
adapt to the d-variable random fields.

The key argument for the derivation of the lower bound of the multfractal spectrum in [27] is
supplied by Theorem 4.13 which yields the existence of a a gauge function with the right scaling
properties. It is derived in the specific case of RWS by. a classical a.s. covering lemma of [0, 1], and it
is replaced here, as explained before, by Proposition 3.2. In the case of SDRWS, in order to apply this
Proposition, we have to verify that, at the relevant values for H for which the supremum is attained

in (38), the number of corresponding wavelet coefficients of size ~ 277 is exponentially large, which

20



allows to apply Proposition 3.2. But this simply follows from the fact that the function defined by
the right hand side of (38) is increasing, and therefore, as soon as it is positive, it corresponds to the

exponentially large case mentioned above.

3.3 Generalized Gaussian mixture models

We now check what these general results yield in the case of generalized Gaussian mixture models
supplied by Definition 2.2. We make the following additional assumptions on the triple

(G, (p))j20. (Cf) 0 kena seqa):

Assumption 2. o C; = 27 for ay > 0;

1.

X

o The distribution G is a generalized Gaussian.

e 38€(0,1) and § >0 : 206-17 < p; <

Theorem 3.1 shows that, in order to obtain the multifractal spectrum of the sample paths of this

model, one has to determine its large deviation spectrum p(a). Denote
pla,e,j) = P(Q_(a-l—a)j < ’C](,le“ < 2—(04—5)]‘)'

Then
pla,e,j) = p; P(C; - Y] € [27 @+ g=(a=e)i)),

Since C; = 2777 it follows that
plae.g) = p; (Fa(27O774) = Fy(27l0799) ),
where the function F,, is defined by (19). The decay rate of F,(a) when a — +oo implies that
If a—7y<0, then  F,(27@ %)) <2V YN >0

so that
if «a <, then pla) = —oo.

If « —v =0, then p(e, €, ) ~ pjFo(0) when j — 400 so that

. . log(p;)
if « =+, then a) =1+ limsu -
K pla) jaJroop log(27)

If & —~ > 0, then using the fact that generalized Gaussians have a continuous nonvanishing density

in the neighbourhood of 0, we obtain that p(a, e, j) ~ pj2_(a_7_5)j when j — 400 so that

. . log(p;)
if  «a >, then a)=1—a+~v+limsu =
¥ p(a) v+ limsup o0

The multifractal spectrum of the sample paths of X stated in the following proposition follows then
from (28): Let

1 .
w = limsup og(pq)'
j—too 10g(27)

The assumptions on the sequence p; imply that w € [—1,0].
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Proposition 3.4. Let X be a RWS given by the generalized Gaussian mizture model with C; = 277
and p; > 215 for an e > 0. The multifractal spectrum of almost every the sample paths of X is

given by
H(1+w) v

Dx(H) =5 ifHe[%l—i—w]

= —© else.
Remark 7. This result highlights a qualitative distinction between the cases w = 0 and w # 0.
When w = 0, the sample paths are monoholder: the Holder exponent is constant and equal to H =~y
everywhere. By contrast, when w # 0, the sample paths become multifractal, and the Holder exponent

ranges over the entire interval [y,v/(1 + w)].

We plan to investigate in future work the borderline case w = 0. A specific example of interest is when
pj =1/ 49 for some § > 0. In this regime, although the sample paths remain monohélder, the modulus

of continuity exhibits logarithmic fluctuations.

3.4 Almost everywhere modulus of continuity of GMM

In this section, we sharpen the last statement of Theorem 3.1 by determining the sharp a.e. modulus
of continuity of generalized Gaussian mixtures. A consequence of this result will be that the smallest
and largest possible pointwise moduli of continuity will have been determined exactly. We will prove

the following result.

Proposition 3.5. Let X be a SDRWM where Y}, is a normalized generalized Gaussian and addi-
tionally C; and j - 2'p; are decreasing sequences. Let 0 be the modulus of continuity defined by the
conditions

0(l;) =C;  and 0 is constant on [l;,1;_1],
then the a. e. modulus of continuity of X cannot be a o(0(h)) and 6(h)|log(h)| is an a. e. modulus of
continuity of X.
Proof. Let b > 0 be defined by the condition

P(|Ykl = b) = 1/2.

We now consider the random collection C of couples (j, k) such that |Y} ;| > b. They are also drawn at
random and independently with probability ¢; = p;/2. Let us now consider the intervals I;j of width
l; = 1/§(27p;) which are centered at such a point k-277 where (j,k) € C. A given point ¢ € (0,1) has
probability r;x = 1/(j - 27g;) to belong to one of the I x; since a given couple (j, k) has probability ¢;

to be chosen, and since there are 27 coefficients at each scale,
Yokt =Y Prjegg =) 1/j=+oo.
Jk J J
It follows from the Borel-Cantelli lemma that almost every zg belongs to an infinite number of intervals

I 1. Let now o be such a point. First, we remark that Theorem 2.6 can be rewritten as follows (see
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[42]) : If 6 is a modulus of continuity of f at x¢, then

k
ro — —

Vi, k, li| < C0 (2 + >

> . (40)

Applying this criterium to (j, k) € C, we see that, if 61 is a modulus of continuity at zo then 6;(l;)
cannot be a o(Cj). Therefore, the a. e. modulus of continuity of X cannot be a o(6(h)).

In order to obtain a modulus of continuity which holds almost everywhere, we now pick intervals I
of width [; = 1/j%(2/p;) which are centered at the point k - 277 where y — j, k # 0. A given point
zo € (0,1) has probability r;x = 1/(j% - 27¢;) to belong to one of the I;x; by the same argument as

> oringi =Y 2riegi =Y 1/5% < +oo.
J J

j?k

above, we now have

It follows from the Borel-Cantelli lemma that almost every xg belongs to a finite number of intervals
I . Let now zg be such a point. Using now the converse part of Theorem 2.6, we obtain that

h +— 02(h)|log(h)| is an a. e. modulus of continuity of X. O

4 Estimation of the uniform Holder exponent

To simplify the presentation of the method, we assume in this section that d = 1. Since

our motivation comes from stochastic processes, we now consider X = (X)) er e

In [62] we provided estimations of the multifractality parameters ¢; and co which encapsulate key
information, respectively on the location of the maximum of the multifractal spectrum (which can be
interpreted as the regularity exponent most often met in the data) and on the width of the spectrum
(and therefore on the range of regularity exponents that are met in the data). In the present article,
we complement this study by providing and estimation of the third most important multifractality
parameter: the uniform Holder exponent H}?in which describes the uniform Hoélder regularity of a

function, a measure or a Schwartz distribution X. Formally, it is defined (see for instance [44]) by
HYM = sup{a: X € C*(R,)}.

This parameter proves highly practical due to its physical interpretation: in turbulence, H)ngin high-
lights the most singular structures within a turbulent flow, often associated with sharp gradients or
extreme dissipation events; in finance, it captures abrupt changes or volatility spikes in time series
data; and in image analysis, H?m identifies the sharpest edges or transitions in fractal-like textures.
It has been used in many applications as a classification parameter, and therefore the question of its
statistical estimation is important.

Related work. The estimation of multifractality parameters has a long history. Early contributions
focused on increment- and variation-based estimators of local Holder exponents [35], while global
multiscale methods such as the Wavelet Transform Modulus Maxima (WTMM) [61], Multifractal
Detrended Fluctuation Analysis (MFDFA) [48], and wavelet-leader regressions [2] have been used to

estimate extremal pointwise exponents (Amin, hmax), the spectral mode hpic, and the log-cumulants
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¢q, including in particular ¢; and ¢3 [36, 83, 20]. These approaches rely on log-log regressions across
scales, which require sufficiently long signals and may lead to large estimation variances, especially
in multivariate settings [4, 76]. To address these limitations, Bayesian methods have been proposed
for the estimation of multifractality parameters in images and multivariate fields, relying on Whit-
tle approximations and gamma Markov random field priors [20, 82]. In parallel, significant work
has focused on estimating structural parameters in random wavelet series and multifractal stochastic
models, including log-normal and log-infinitely-divisible cascades [12, 18] and Markov-switching mul-
tifractal processes [17]. These parametric models complement nonparametric approaches and place

the estimation of Hy min within a broader inference framework.

4.1 Estimation procedure

In contrast with the parameters ¢; and co whose estimates were based on the laws of the log-leaders
of the wavelet coefficients, the quantity H¥™" is derived directly from the wavelet coefficients: it can

be computed through a log-log plot regression as

Hmln = lim inf log (Squ |Cjk’>
j—+00 log(277)

(41)

We now study the uniform Holder exponent of a semi-dependent random wavelet mixture (SDRWM)
X = (Xt)tery given by
Xt = Z Ck ka(t) =+ Z C] k 7!}].% ) (42)

kezd j>0, kezd
where the (Cj 1), satisfy Definition (2.2). More precisely, we focus on the wavelet-coefficient model

(G, (pj)j>0, (Cjk)j>0,kez), which is assumed to satisfy the following conditions:
Assumption 3. 1. For each resolution level j > 0 and spatial index k € 7,

(i) P(Cjr =0) = 1 — p;, where we assume p; = 2"~17 for some n € (0,1);
(it) Conditionally on Cji # 0, one has Cj, £ C;,Y, where Y has density G.

2. The coefficients are of the form
Cjx=2"""DXjy, (43)

where o > 0 is a fized decay exponent and D > 0 is a scaling constant.

3. For any j > 0 the random variables (X 1), are i.i.d. and generalized Gaussian (see (6)), with

density

—|z|B
B lal

— ke 2l
= Kpge ’ (44)
2T (%)

fa(x) =
for some B > 0.

Remark 8. Condition (i) ensures that there are approxnnately 2 non-vanishing wavelet coefficients,

randomly located in [0, 1], each of magnitude 2% (with o > 0). When n = 1, the coefficients are
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non-lacunary, and the model reduces to the standard SDRWS case. Condition 3 corresponds to the
semi-dependent case: the wavelet coefficients are independent at a given scale j, but no independence

assumption is imposed between coeflicients located at different scales.

The following result, which may be viewed as a corollary of Proposition 2.4, provides an explicit

expression for the uniform modulus of continuity of the RWM satisfying Assumption 3.
Proposition 4.1. Let X be the SDRWM with coefficients satisfying Assumption 3. Then, HY™ = a.

Proof. Let us assume, without loss of generality, that 8 > 1. The case < 1 can be handled in the
same way by using the version of Mills’ ratio given by (59) (8 < 1) or exact computation (60) (beta =).
Let for any (j,k) € Nx Z, Cj5, := 27 DX, (with 8 > 1). For any = € R* , by independence of the

wavelet coefficients (Cj )k,
]P)(sgp\Cj,M <z)= H]P)(’Cj,ﬂ <)
k
. N
= [1= pP(Xl = 292/D)]

where N; = C1p;2 = C12". In the one hand, choosing x such that p;P(|X; | > 2%9z/D) = 1/N;, we
get

jli_)IIOIOP(SLIJ;p Cjkl <) = e L.
On the other hand, it follows from Mills ratio (56) applied to generalized Gaussian random variables
with g > 1, that, for any = > 0,

2f3(2% 2/ D)

P(|X;x| >2%2/D) ~ 2= 70
(| j)k’ = J"/ )]—>oo ﬁ(2ajl'/D)ﬁ717

Ignoring the factor I'(1/8)(2%92/D)P~1 at first order and setting

~ [DP((2n —1)jlog(2) +log(C1))]*/*

2ajp ’
we get
log (sup[Cjkl)  ~ log ((log(2)(2n — 1)D")/7j!/Paed),
k J]—00
so that H¥™ = liminf; ;o log (supy |Cjk|)/log(277) = a. Hence the result. O

To construct an estimator of H}?in, we need a more precise understanding of the behavior of the
random variables log (supy, |Cjx|)/log(277) defined in (41) for large j. This amounts to providing a

quantitative version of Proposition 4.1. The estimation procedure relies on the following key lemma.

Lemma 4.2. Let X be the RDWM with coefficients defined by (43) and (44). Let € > 0. For 3 > 0,

set 0 = 3(1—B)/(28), 62 = (1 —B)/(28), 6 = —(1 = B)/(28), ¢ = kp/(28 — 1) and " = Kg/B. For
c >0, set Cy3(c) = cCy log(2)(1=A)/8, Cpalc) = clog(2)1-A)/8,
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e Case 8 > 1. Set ji(e) and jo(e) such that

e O — /9 gpd e Cnal@)i() ™ /(1-Cra@)2 2O pa(&) %) _q _ /9.

For any j > max(j1(¢), ja(€)), the following holds with probability at least 1 — e:

sup |4l € [279D(njlog(2) + 01 log(7) , 2~ D(njlog(2) + B2 o))

e Case 5 < 1. Set ji(e) and ja(e) such that

e*Cn,S(CN)jl(E)_é — 5/2 and e*Cn,S(CH) [1+C’!],4(C)ja/(Q(lfan(c)jé)] — 1 _ 5/2

For any j > max(ji(¢), ja(g)), the following holds with probability at least 1 —e:
sup |y € [277 D(njlog(2) + 62 108(j)) , 277 Dlnjlog(2) + b1 loga(7))|
o Case f=1. Set ji(e) and j2(e) such that
¢CiE) —c/3 and ¢ O [1-C1REOTRO-ClREOT] _ 1 _ /9.

For any j > max(j1(€), j2(€)), the following holds with probability at least 1 — e:

sup |C4l € [279D(njlog(2) ~l08(7)) , 2 Dlnjlos(2) + logs ()]

Proof. The proof is postponed to Appendix C.2.

Estimation of H}?in from quantiles We directly deduce from the Lemma 4.2 that for any
J > max(j1(/2), j2(€/2)), we have with probability at least 1 —/2:

sup |yl € (27 D(njlos(2) + 0 log(s) . 2~ Dlnjlos(2) + 0 log(7))].
as well as
sup [yl € [2729 D (20 log(2) + O log(24)) , 2> D(2n108(2) +Bu lox(24) .
where 0y = 0111551y + 021131y and 0, = 021551} + 011451y For any j > 0, define

_ log (supy, |Ca; x|/ supy |Cjoxl)
log(277) .

Zj

Then, we have
P(Z;j>4;)>1—¢ and P(Z; <uj)>1-—¢,

where we set
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2203 D (215 log(2)+0, log ;) —aj 2njlog(2)+6; log(s)
, lo ( 2=27D(nj log(2)+6u log(5)) ) _ log (2 ’ 17 108(2)+0u log(j)> =a+rt (48)
J log(2—7) log(277) g
and
o <272ajAD(2"7]‘ log(2)+6., log(5)) ) lo (Z—aj 217 log(2)+0. log(j) )
" & \ 2797 D(nj log(2)+0; log(j)) _ & nylog(2)+0elog(s) ] _ a+r? (49)
j log(277) log(277) g
with
21 108(2)+0, log(j) 215 log(2)+6., log(4)
. log (m‘ Tog(2)+0. 1og () > and 7t — log ( nj log(2)+0 log(j) > (50)
j log(27) ’ log(277)

To estimate HQin = «, it is then enough to have estimates of /; and u; and we have

(65 —75) + (uj — )

Hmin — J
X 2
Note moreover that follows from (47) that
; ; i 4 uj
G = O

is the (1 — ¢)-quantile of the random variable Z;.

Estimation of ¢; and u; Consider i.i.d. copies X!,..., X™ of the process X defined in (1). For any
le{l,...,n}, set

i o8 (supy G,/ supy |

! log(277)

As a reminder, the empirical cumulative distribution function associated to the sample {Z ;, ey ZJ"}

is defined as:
. 1<

The ZJL are i.i.d. random variables distributed as the variable Z; defined by (46). Let p=p. =1 —e¢.
As explained in the Appendix, the idea of the so-called Peaks-Over-Threshold (POT) method is to first
extract the excesses in = Z](n_k%+i) - Z;n_k%) for i € {1,...,k}}. Under the Pickands-Balkema-de
Haan theorem the conditional excesses sequence (Yf)z‘zl converges in distribution to a random variable

Y; distributed according to a generalized Pareto distribution
Fy,(y) =P(Y; > y|¥; > 0) =1— (1+&y/o)) 5, y>0,1+&y/o >0,

where ¢; > 0 is the shape (tail index) and o; = 0, is a scale that may depend on v,. Define the
POT estimators (see Appendix B) by

S o[k 7 (K (k)
U =vp + fAj Rnp) 1} and uj :={; (Zj Zj ) (51)
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where the estimators ({Aj, ;) can be obtained by the maximum of likelihood estimator

(§.57) == (€%,5%%) = argmax > log (fy, (yi: €, 0))

o) i
Final estimator Then, we consider
Hpin — (4 —r5) + @ — )], (52)
X 2’J(5)‘ Z [ J i J i ]

where J(e) = {j, j = max(ji(e), j2(€))}-
Remark 9. The choice of the random variables Z; (46) may appear unconventional. In the context of

log-log regressions, one typically considers the ratio

log (supy, |Cjkl)
log(277)

In contrast, we focus on the numerator,

supy. |Cy;
lo < Dk | 25,k > :
supy, |Cj k|

which allows us to mitigate the potentially detrimental influence of the normalizing constant D and

thereby enhances the robustness of our procedure with respect to it.

We can deduce a confidence interval for the estimation of H}?m:

Theorem 4.3. Let 6 € (0,1). With probability 1 — ¢,

0 —rt uj —rl 0 —rt uj —rl
PP B O XU NN RS KR/

21J ES P2l P i
|7l jere) 1+ z1-s/0/10)) \ Vik/kn /()] iel@) 1= 21-5/¢2/15))\ Vik/kh

where z1_g/5 is the (1 — §/2)-quantile of the standard normal distribution and ‘7]/C = ?{k + (1+

&)%) (2(1 — £/2)).

Proof. Let 6 > 0. Follows from Theorem B.1, that for all j € [J(e)] with probability at least 1 —
3/1J(e)l,

N
qg): J ]6

2

(54)

(€ +1y)/2 (4 +15)/2 ]
L+ 2157106\ Vin/kl 1 21-5/217)) Vik/kh

where z1_s/5 is the (1—§/2)-quantile of the standard normal distribution and Y//\'Jk = é?’k—i—(l—l—gj’k)Qp/p.
For all j € [J(¢)], let

E, :{ (4 +u;)/2 chitu (4 +u;)/2 }

—~ - = 9 = PN -
L+ z1-6/2/100)) \/ Vie/ Kt 1= z1-6/¢2/100))\/ Vie/ K
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Note that P(E;) > 1 —§/|J(e)| for all j € [J(e)]. Consider the event

L
A:{ 1 R

17(e)] jed) 1+ 2157027100\ Vik/En

< 2|Jl( - 3 (6 —r§) + (@ —AT’}L) }
N jere 1~ ZH/(z/N@)DW
Z. _ ot T e
- {2’J1(€)‘ 3 (6 —my) + (@ Arﬂ < 2|J1(E)| >l =)+ (uy — )]
jes(e) 1+ ZH/@/\J(s)DW j€J(e)

1 (G —r8) + (@ — 1)
< 3E 2

jed(e) 1 — ZH/@/N(e)Dm }

Using a union bound argument, we get

J(e)
P(A) > IP’( N E])
j=1
(©)
>1-) P(ES)
j=1

> 1= 1J(e)]/(6]J(e)]) =1 -4

Hence the result. O

4.2 Numerical experiments

In this section, we empirically assess the estimation procedure for H™™ for random wavelet series
described in the previous section. More specifically, we investigate the finite-sample behavior of the
proposed peaks-over-threshold (POT)-based estimator (52) of the uniform Hoélder exponent. Syn-
thetic multiscale coefficient fields with known theoretical regularity are generated, and we evaluate
the accuracy of both the point estimator (52) and the associated confidence interval (53). Particular
attention is devoted to the choice of the intermediate sequence (ky, )y, which is selected via bootstrap

minimization of the mean squared error (MSE) of the Hill estimator.

Procedure For given parameters a > 0, D > 0, and § > 0, we simulate independent generalized

Gaussian wavelet coefficients

Ch=D29X\)  1<0<n, 1<5< Jpax, 1<k<Y,

where X]{k ~ GG(0,1,B) has density f:x+ 3/(2I'(1/8)) exp(—|z|?).
Throughout, we set n = 105 and Jya = 14, which is the largest scale level for which the simula-
tion remains computationally feasible. Beyond this point, the exponential growth of the number of

coeflicients makes the procedure considerably slower and unstable in practice.
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For each replicate, we compute the quantities Zf defined in (46), up to scale j = 7 according to
their construction. We then retain the set of scales J(¢) = {4, 5,6, 7}, which correspond to the highest
available resolutions. In the theoretical analysis, the scale index j is considered asymptotically large,
while in practice only a finite number of scales can be used. Accordingly, J(g) is chosen to consist of
the largest available scales to closely approximate this asymptotic behavior. The exceedance proba-
bility is fixed at e = 107°.

Tuning Parameter As described in Appendix B, the Peaks-Over-Threshold (POT) method starts

by extracting the exceedances Y; = Z, _y, 14) —n, @ = 1,..., kyn, where the threshold is v, = Z(;, _p,,)-

The choice of the number of upper order statistics k, plays a central role in tail estimation: selecting
too few observations results in high variance, whereas including too many introduces bias. Following
the data-driven strategy proposed by [22], we determine &, through a bootstrap-based selection proce-
dure. For each candidate value of k,, = k, the tail index £ is first estimated from the top k exceedances.
Then, for this same k, we generate B bootstrap resamples drawn with replacement from the original
sample, recompute the tail index on each bootstrap sample, and evaluate the corresponding mean
squared error (MSE) between the bootstrap estimates and the original estimate. The optimal k,, is
selected as the value of k that minimizes this bootstrap MSE, thus achieving a principled trade-off
between bias and variance. In our study, we consider a regularly spaced grid Kgrjq = 10 : 10 : L%J , and
perform B = 300 bootstrap replications. This choice provides a sufficiently fine resolution for select-
ing k,, while ensuring the standard requirement k,,/n — 0 for the consistency of semi-parametric tail
estimators. It also remains computationally feasible, offering a good compromise between statistical

accuracy and numerical efficiency.

Results and interpretation

Table 1 reports the estimated 95% confidence intervals for the minimal Holder exponent H}?m

under various choices of the parameters «, £, and D. These numerical experiments are designed to
assess the finite-sample performance of the proposed Peaks-Over-Threshold (POT) estimator and to
evaluate its robustness with respect to the underlying model parameters.
We first examine the effect of the tail parameter 8 by fixing D = 0.5 and considering both g < 1
and 8 > 1. The resulting confidence intervals exhibit only minor variations across different values of
B, indicating that the estimator is largely insensitive to the tail behavior of the generalized Gaussian
coeflicients. This robustness with respect to 5 suggests that the POT-based approach performs reliably
across a broad range of heavy-tailed regimes.

Next, we analyze the influence of the scale decay parameter «. For each fixed 3, the width of
the confidence intervals increases monotonically with «, in agreement with the theoretical scaling of
the wavelet coefficients (43). Smaller values of a correspond to slower decay across scales, leading to
larger extreme coefficients and consequently narrower confidence intervals. In contrast, larger « values
induce faster decay, yielding smaller extremes and increased relative variability in their estimation,

which results in wider intervals. Therefore, the decay rate a directly controls the magnitude of the

30



Table 1: Estimated 95% confidence intervals for

the uniform Hoélder exponent H}?in with fixed am-

plitude D = 0.5 and varying scale decay « and

tail parameter .

Table 2: Estimated 95% confidence intervals for

the uniform Holder exponent H?in with fixed tail

parameter 8 = 4 and varying scale decay « and

amplitude D.

B a=HYn Hon CI Size || D a=HYn» oo CI Size
0.5 0.501  [0.499,0.504]  0.005 0.5 0.498  [0.495,0.500]  0.005

0.998  [0.993,1.003]  0.010 0.998  [0.993,1.003]  0.010

0.8 5 4983 [4.958,5.008]  0.049 || 0.5 5 4998  [4.972,5.024]  0.052
10 9.991  [9.939,10.043]  0.104 10 9.998  [9.946,10.050]  0.104

50 49.99  [49.728,50.255] 0.527 50 49.998 [49.740,50.258] 0.518

0.5 0.498  [0.495,0.501]  0.005 0.5 0.498  [0.495,0.500]  0.005

0.997  [0.992,1.001]  0.009 0.998  [0.993,1.003]  0.010

3 5 4998  [4.975,5.021]  0.046 || 5 5 4998  [4.972,5.024]  0.052
10 9.997  [9.950,10.044]  0.094 10 9.998  [9.946,10.050]  0.104

50 49.996  [49.759,50.236] 0.476 50 49.998 [49.740,50.258] 0.518

extreme wavelet coefficients and, in turn, governs the precision of the POT-based estimator.

In Table 2, we investigate the effect of the amplitude parameter D for fixed § = 4, considering
two representative values, D = 0.5 and D = 5. The corresponding confidence intervals are nearly
identical across these choices, demonstrating that the estimator is essentially invariant with respect to
the amplitude of the coefficients. As in the previous experiments, the interval width remains primarily
driven by «, confirming that the decay parameter plays a dominant role in controlling estimation
variability.

Overall, these experiments demonstrate that the proposed estimator is robust with respect to both
the tail parameter 8 and the amplitude D. Moreover, the estimation error scales predictably with «,
in agreement with the theoretical behavior of the wavelet coefficients and the asymptotic properties
of the POT estimator. In summary, the proposed estimator provides accurate and reliable confidence
intervals for H}?in across a wide range of parameter settings. The estimator remains accurate and
stable over a broad range of heavy-tail parameters § and amplitudes D, with confidence interval

lengths consistently remaining small, thereby confirming the effectiveness of the POT-based approach.

5 Concluding remarks

In this paper, we refined classical uniform and pointwise regularity results concerning random wavelet
series (RWS) and we extended them to settings with dependent coefficients. We focused on the par-
ticular case commonly met in applications of generalized Gaussian mixture models. We broadened
the classical independent-scale setting to a semi-dependent random wavelet series (SDRWS) frame-

work, permitting arbitrary cross-scale dependence while preserving within-scale independence. In this
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unified setting we specified known uniform moduli of continuity, we extended them to SDRWS and
mixture models, and we characterized the associated pointwise worst-case regularity. A new block
ubiquity theorem allowed to derive multifractal spectrum for SDRWS, which we specialized to gener-
alized Gaussian mixtures together with the almost-everywhere modulus of continuity. These results
elucidate in a coherent manner how cross-scale dependence shapes Holder and multifractal features.
Finally, exploiting wavelet leaders, we constructed an estimator of the uniform Ho6lder (minimal) ex-
ponent H™™ and derived a theoretically grounded confidence interval. Empirical experiments confirm
the reliability of the inference and its confidence interval. Together with the estimation of the other
classical multifractality parameters ¢; and ¢y performed in the previous article [62], the addition of the
third one H ?in performed in the present paper now allows to consider questions that were addressed
previously in very particular parametric settings such as: Are the data monohdélder or multifractal?

We considered laws of wavelet coefficients that are commonly met in the signal and image processing
litterature. However, a natural question is to determine if these hypotheses are compatible with the
natural consistency requirement that this hypothesis remains invariant under a change of wavelet
basis. Such verifications are common for the definition of function spaces defined by conditions on the
wavelet coefficients [57], but this problem does not seem to have been considered in other settings.
Another question of interest is to investigate applications of these results to models which satisfy
the the SDRWS assumptions; the conclusions of the present paper state that multifractal properties
are not really affected if the cross-scale independence assumption is dropped. A natural question
is to determine of some more refined multifractal analysis would be able to put in evidence such
results. Natural candidates are supplied by bivariate multifractal analyses of several different pointwise

regularity quantities derived from the data, see [43].

A Mills ratio

In probability theory, the Mills ratio [59] states that for a continuous real random variable X with

density f and for any z € R,
I 1
1) =lim -Plz < X <z+¢lX > x), (55)
() es0e
where for all x € R, we define I(z) = P(X > z). Bounding (55) provides insights on the distribution
of the tails of a random variable. For instance, if X has a generalized Gaussian distribution with
density (44), for all z > 0,
gl=Be—a”

1) > Srars

This result can be refined by providing non-asymptotic bounds. We recall the following lemma, proved

(56)
in the companion paper.

Lemma A.1 (General bounds for Mills ratio). Let g : R — R be a twice differentiable positive function

such that g’ is positive on RY. and g" has a constant sign on Ry. Assume, moreover, that there exists
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a function M : Ry — Ry such that for x > 0,

’ g9"(t)
(g'(1))?
Let X be a real random variable with density f = ke™9, where k > 0 is a normalisation constant. For
all z € R, we define I(x) =P(X > )= [° ke~ 9 dt. Then,

sup M(x).

te€[z,00)

f(z) f(z)
Vo € RY, <I(x) < . (57)
- 9'(@)(1+ M(z)1{gr>0) ) 9'(x)(1 = M(z)1{gr <o)
Proof. For v € R,
oo ./ A 0o I
kI (2) = / g/(t) e 90 dt = lim [— %e*g(t)} — / gli(t)Qe*g(t)dt
« 9(t) A—oo L g'(2) z Jo (9(1)
1 _ o0 g//(t) B
— e~ 9(@) _/ e 9®) g¢.
g'(x) + (9(1)?
If g > 0, we get that for any z € R* ,
e—9(@) 1 e—9(@)
— kM () (2) < k1 (2) < ,
70 (@)I(x) < (z) < e
whereas if ¢ < 0,
) @) < S (@)
<k I(x) < +x m(x)l(x
g'(x) g'(x)
The two inequalities lead to (57). O

Ezample 1. 1. Standard Gaussian. Taking g(x) = 22/2 and & = (27)"'/2, we find M (z) = 1/
This boils down to the well-known result:
1 6—12/2 —x2/2

V2r (1 +1/22) =

2. Generalized Gaussian with light tails (3 > 1). Taking g(z) = |z|? and rg = 8/(2T'(1/8))
with 8 > 1, clearly ¢’ > 0 and g” > 0 on R* . We have that for all > 0, M(z) = (8 — 1)/(B2")

and

e

Vo > 0, I(z) <

wl-
)

X

1 e_zﬁ 1 e

<Ix) ———~——.

0(1/8) 70+ (B 1) = = (i /E o

3. Generalized Gaussian with heavy tails (0 < 3 < 1). Taking g(z) = |z|® and & =

B/(2I'(1/B8)) with f < 1, we check that ¢’ > 0 and ¢” < 0 on R}. We have that for all
x>0, M(z) = (1 - 3)/(Bz") and that

B
(58)

gl=Be—a’ 1 gl=Be—’
(15 =S T m -0 pEa)

In the case of a Laplace random variable (§ = 1), there is no need to invoke Mills’ ratio; the

(59)

integral can be computed explicitly. Indeed, for any = > 0, one has

I(z) = —. (60)
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B Extreme quantile estimation

B.1 Definition and confidence interval

Let p € (0,1) and F' be the cumulative distribution of a random variable Z. The p-quantile can be
defined as

1r. 1 _
4 = 5| nf{z s F(2) = p} +supfa: Pe) < p}] = Jlaf + ;.
Consider 7y, ..., Z, ii.d. random variables. The empirical cumulative distribution function is defined

as:
~ 1 &
Fn(l') = ﬁ Zl 1{Z¢§x}'
1=
Then the empirical p-quantiles are given by
gy = inf{z: F,(z) > p} and @, :=sup{zr: F,(z) < p} (61)

We set
Ej;‘ =Z® for pe ((k—1)/n,k/n] and q = Z®) for p e [k/n, (k+1)/n),

where Z(1) < 7(2) < ... < Z(" are the order statistics. To remain consistent with Lemma (4.2),
we set p = p. = 1 — €/2, where ¢ is very small, so that we target an extreme quantile. The (usual)
empirical estimator (61) based on the order statistic quickly becomes impractical, because on average
it needs 1/(1 — p) observations lying beyond that quantile, that is tens of thousands when p = 0.9999,
and millions or even billions as p creeps closer to 1. To bypass this data-hungry bottleneck, we cannot
simply observe the tail; we must instead extrapolate it. The idea of the so-called Peaks-Over-Threshold
(POT) method is to first extract the excesses Y; = Z("~Fnt9) _ o for i € {1,...,k,}, by choosing

(n—=kn)  With this choice, exactly k, observations exceed v,, so that Y; > 0.

for instance v, = Z
Under the Pickands-Balkema-de Haan theorem the conditional excesses sequence (Y;);>1 converges in

distribution to a random variable distributed according to a generalized Pareto distribution
Fy(y) =P(Y >y[Y >0) =1—(1+&y/o)" "5, y>0,1+&y/o >0,

where £ > 0 is the shape (tail index) and o = o, is a scale that may depend on v,,. Estimators (&, 5%)

are typically obtained by the maximum of likelihood estimator

kn
(gka 8]€) = (Ek‘n?akn) = ar(gém)ax Z log (fY (yla g’ U)) = ar(ggm)a’x E(Ea 0)
7 i=1 7

where fy is the density function associated to Fy. Then, the POT estimator of q;{ is defined by

G [ (Ko 6

GO+ = v, + Tk [(") o 1} (62)
np

Assumption (T1) (First-order tail) Let for ¢ > 1, U(t) = F< (1 —1/t), be the generalized inverse

function of F'. Assume

0 o x>0, with&>—1/2.
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Assumption (T2) (Second-order tail) There exist a function A such that A(t) — 0 and a constant
p < 0 such that

x> 0.

Ultx)/U(t) — xf £ xf —1
A(t) t—o00 p

Assumption (K) Let a sequence (ky)p>0 satisfying

kn, — 00, k—”—>07 \/EA(%) — 0.

n—oo n n—oo n—00

Assumption (E) Set the threshold v, = Z(" %) and o, := oy, let (&,0%) be the MLE of (£, 0).

Assume

& — ¢
Vn —~£ 5 MO, S¢,),  and &> —1/2.
opfor —1) "
We have the following result:
Theorem B.1. Let Zy,...,7Z, be i.i.d. real-valued random wvariables with cumulative distribution

function F. Under Assumptions (T1), (T2), (K) and (E), we have

~POT,+

\/qup

with V(p,&) = €24+ (1 +&)2(1 —p)/p.

We can define the left-hand version of the POT estimator:

+
- Qp L

N(0,V(p,£))

ZI\II)DOT,f — /q\EOT,+ _ (Z(n7k+1) _ Z(nfk))7

as well as the average POT-estimator:

_POT,+
~pOT _ 4p +
Qp -

2

~POT,—
dp

The gap between the adjacent order statistics that straddle the threshold satisfies (classical spacing
theory) Z(=k+1) _ z(n=k) — Op(n=1). As k, = o(n) we get \/kn(§£OT’+ - ?ngT’_) %5 0 so that the
two POT estimators are indistinguishable on the /k,-scale. Using Slutsky’s lemma, we get then

~POT _

Vi 2

with V(p, &) = €2+ (1 + £)*(1 — p)/p. We can deduce a confidence interval for g,

d
n—oo

N0,V (p,£)),

dp

Corollary B.2. Let § > 0. Under the Assumptions of Theorem B.1, with probability at least 1 — 4,

~POT ~POT
p p

14 216/21/ Vi/kn 1- Z1-5/21/ Vie/kn

where z1_59 is the (1 — 0/2)-quantile of the standard normal distribution and Vi = f/z +(1+ gk)zp/p.

qp € , (63)
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C Proofs

C.1 Proof of Lemma 4.2 (case [ > 1)

Let for any (j, k) € Nx Z, Cjj, := 2" DX, (with 8 > 1). The proof in the case 8 < 1 easily adapts
by using the Mills ratio (59).

Proceeding as in the proof of Proposition 4.1, we have, for any for any z € R* |
. N;
P(sup [Cj ] > 2) = 1 — [1 —P(|X; 4 > 2%2/D)|
k

where N; = C12". Note that, from Mills ratio (56) applied to generalized Gaussians with 3 > 1, we
have for any ¢ > 0,

fa(t fa(t
e < Pl 2 ) < 50,
Then, we get
1 fs(2%z/D) 1N 1 fp(2¥2/D) 1N
1— [1 ~ 351 (Q%/D)ﬁfl} < P(St;p\cj,kl >x)<1- [1 - E(QM/D)BA]

Define Aj(c,z) = [1 — ce~(2%72/D)? (2“9$/D)1_6} " for any ¢ > 0 and z > 0. Then we have
P(sup|Cjr| > x) >1— Aj(c,z) and P(sup|Cji| <) > A4;(", 2), (64)
k k
with ¢ = kg/(26 — 1) and ¢ = kg/B. Note that fz(z) = /<;52_$B/1°g(2). For any x > 0, define
H(z) = 27 M@/ 1082 (b)) 1=A/B  and  h(z) = (2%z/D)".
Using that for u > 0 small we have

—u — =) < log(1 — u)

IN

—u, (65)

we get, for x large enough,

H{(z)

—C12MH () |1+ 50— H(2)

<log(A;(c,r)) < —C12V H(x).

Choose = such that h(z)/log(2) = (2%x/D)”/log(2) = nj + 0 logs(j) where § will be chosen later on.
Then, let us define

Cpalc) = en A8 10g(2)1A/8 and Cpalc) = en1=0)/B10g(2)1=R)/5, (66)

)

We have

—Cy2V H (z) = —Cy 2" 2~ (7010800 [1og(2) (1 + 010g,(5))] (1-8)/8
= ~Cya(e)n™ P50 g + 0logy (5)] VP
0+(1-p)/8

]:OO - 7],3(C)j_ 5
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and

cQ*CQ(Qij/D)ﬁ (2a]x/D)1*,B — 62*(7]j+9 log, (7)) [10g<2)(n9 4 ] 10g2 (]))] (1-p)/8
 Cpa(0)g O,

j—oo K
Let 6 = (8—1)/(28) > 0.
Case 1 Let =01 := 3(1 — 3)/(28) We get, that for j large enough,

Cn,4(0)j5
2(1 — Gy a(c)279) 40

~Cy3(e)j’ |1+ < log(4;(c, 2)) < =Cys(c)j’.

Then, for j large enough, by (64),
P(sup |Cj i > ) > 1— Aj(d,x) > 1 — 6703(@)]‘5’
k

where, as a reminder, z is such that (2%z/D)? = njlog(2) + 61 log(j), Cy3(c) and O, 4(c) are given
by (66). For sufficiently large j, the following holds with high probability:

sup |Gl 2 270D [log(2) (nj + 01 loga(7))] e

Case 2 Let 62 = (1 — 3)/(28) We get, that for j large enough,

Cpa(0)j®
2(1— Cn74(c)j5

Then, for j large enough, by (64),

~Cps(e)s’ |1+ <log(A;(c",x)) < —Cya(c")j ™.

P(sup [Cix| <) > Aj(",2) > e @3 [1+C 4(03° /2(1-C a(95°)]
up |Cjl < ) = >

where, as a reminder, z is such that (2%/x/D)? = njlog(2) + 02 1log(j), Cp3(c") and C, 4(c”) are given
in (66). For sufficiently large j, the following holds with high probability:

i . 11
sup |C;| < 279D [log(2)(nj + 0loga(7))] """
We can then deduce a confidence interval for sup, |C;x|. Let € € (0,1) be small.
First, let j(&) such that e=Ca()iE) = £/2. From Case 1, we know that for any j > j(¢),

P(sup |Cjx| > z) > 1 —e (7" =1 - g
k

where z is such that (2%92/D)? = njlog(2) + 01 log(j).
Second, let ja(e) such that exp (— Cy3(c")ja(e) 70 /(1 — Cpa(c")2772) 5 () 7)) = 1 — /2. From Case

2, we know that for any j > ja(e),
P(sup [l < @) > ¢~ Cna@) [1+Cna0*/(G0-Cra@i)] — 1 _ €
k A 2’

where x is such that (2%92)% = njlog(2) + 6logy(j). Then for any j > max(ji(e), j2(¢)), we have with
probability at least 1 — ¢,

Sup 1Cjxl € [Taj D(njlog(2) + 6110g(5)), 27 D(njlog(2) + 02 logy(4)) |-

Hence the result.
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C.2 Proof of Lemma 4.2 (case [ =1)
Proceeding as in the proof of Proposition 4.1, we have, for any for any z € R* |
. N; . N.
P(sup x| = @) = 1= [1=P(|X;] = 2792/D)|  and Plsup|Cixl < @) = |1-P(|1Xj4] = 2/ D)
k k
where N; = €12, Note that for any ¢ > 0,

eft
P Xkl > t) = 5

Then, we get
IP’(Sl;p ICikl >x)=1- [1 - exp(—2°‘ja:/D)}Nj =:1—-Aj(x) and P(Sl}ip ICjkl < x) = Aj(x).
Using (65), we get
—H®ﬂ1+mi?gzm}Skgwﬂ@)S—H@)

with
H(z) := C 2M e 2V%/D — cyonig=nitoloss(i) — ¢ 50,

Then, we have

1

L Y ._pl ._pl
P(sup |Cji| > x) > 1 — e @™ and P(sup |Cj k| < x) > e G [1-C15 "2 /201-Cny 2))},
k k

where we choose §; = —1 and 63 = 1. Consider j;(¢), jo(¢) such that

1— efcljl(e) -1 8/2 and 6701]’2(5)—1 [1701]'2(5)—1/(2(1701j2(5)—1))] 1 5/2

Hence the result.
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